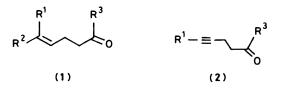
Synthesis of Single Isomers (*E* or *Z*) of Protected γ , δ -Unsaturated Ketones by the Horner-Wittig Reaction

Christopher A. Cornish and Stuart Warren • University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW

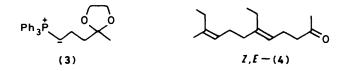

The lithium derivative of the γ -diphenylphosphinoyl ketal (**10a**) added to aldehydes and ketones to give stable Horner-Wittig intermediates (**11**) which were separated and converted into single isomers (*E* or *Z*) or γ , δ -unsaturated ketals (**12**). *erythro*-Adducts (**11**), and hence *Z*-(**12**), were selectively formed by addition of aldehydes and *threo* adducts (**11**), and hence *E*-(**12**), by reduction of the corresponding α -diphenylphosphinoyl ketones (**13**), prepared by acylation of the same γ -diphenylphosphinoyl ketonel (**13**).

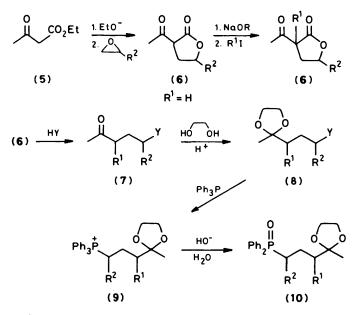
 γ , δ -Unsaturated aldehydes and ketones (1) occur naturally and have been used as intermediates in the synthesis of juvenile hormone,¹⁻³ rethrolones,⁴ insect pheromones,⁵⁻⁸ terpenes,⁹ trisporic acids,¹⁰ and prostaglandins.¹¹ Most of the natural products have a specific double bond geometry, a feature also required of the synthetic intermediates.

E-Isomers are often made by the Claisen-Cope or Carroll rearrangements which give good stereoselectivity in ketones (1) where R^1 and R^2 are very different in size,¹² but not if they are similar in size but different in electronic demand.^{13,14} The strategy of this approach is the allylation of a ketone.

that separation of geometrical isomers must be attempted by g.l.c.,² t.l.c.,¹⁰ repetitive continuous elution chromatography,⁹ or spinning band distillation.^{3.13} Column chromatography gave either incomplete separation ¹⁴ or decomposition.⁹

We report²¹ that the Horner-Wittig reaction with the γ diphenylphosphinoyl ketals (10) may be used stereoselectively in reactions with aldehydes and ketones to produce *E* or *Z* isomers of γ , δ -unsaturated ketals without separation of the final products. Instead flash chromatography²² and crystallisation of the intermediates on a gram scale gains exclusive entry to one stereochemical family.




If the double bond is derived from a triple bond by reduction,^{4.8} full stereochemical control may be achieved by suitable reduction methods.⁶ For many years,¹⁵ addition of an acetylene to an enone was not among the available approaches to γ , δ -ynones (2) but alkynyl aluminium¹⁵ and boron^{7.16} reagents are now known to add to cisoid enones to give ketones (2).

The Michael addition of vinyl anion equivalents to enones is one of the simplest strategies but vinylboranes add thus only to cisoid enones.¹⁷ Full stereochemical control can be achieved by the addition of a vinyl cuprate, even to cyclopentenones.¹¹ Trisubstituted double bonds can be made by addition of an alkylcopper to an acetylene and Michael addition of the resulting stereospecific vinyl cuprate.¹⁸

The Wittig reaction of the ylide (3) with aldehydes and ketones was one of the first approaches.¹⁹ Under the right conditions, highly selective *cis* olefination is possible with aldehydes⁴ but isomer ratios of 75:25 to 45:55 (*E*:*Z*) are found with ketones.^{2,3,9,10,14,20}

In one example,² a Claisen rearrangement followed by a Wittig reaction between the ylide (3) and a ketone gave a 15:23:25:37 mixture of geometrical isomers of the ketone (4). The worst aspect of these two otherwise excellent methods is

Scheme 1. Synthesis of protected y-diphenylphosphinoyl ketones

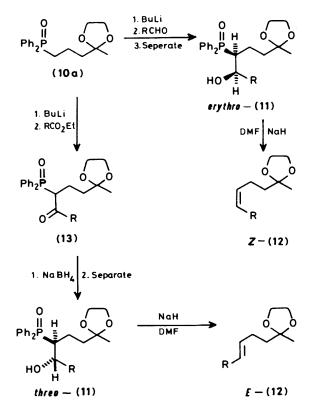
The phosphonium salt (9a) had been made ^{2.4.23} in the usual way from the protected γ -halogeno ketone (8a). Alkyldiphenylphosphine oxides are usually made from phosphonium salts by alkaline hydrolysis ²⁴ and γ -halogeno ketals can be assembled by the reactions in Scheme 1. Addition of an epoxide to the keto ester (5) gave keto lactones (6; R¹ = H),²⁵ which were alkylated ²⁶ if required. These keto lactones (6) can be converted directly into γ -halo ketones ^{2.27} (7) with HCl, HBr, or HI. Yields were generally better with HCl and the chloro ketone (7; Y = Cl) gave the highest yields of ketal (8), but the reaction with triphenylphosphine was so slow (Table 1) that the best compromise was to use the bromo compounds (8; Y = Br).

			Yield (6)		Yield (7)	Yield (8)	Time "	Yield (10)
Series	R ¹	R ²	(°₀)	Y	(° _{′0})	(° ₀)	(days)	(° ₀)
а	н	н	78	Cl	88	83	3*	65
				Br	73	72	2	72
				I	68	70	2	54
b	н	Me	55	Cl	91	80		
				Br	80	64	5	38
с	н	Et	42	Br	78	58	4	43
d	Me	н	72 °	Cl	83	69		
				Br	61	49	2	52
e	Me	Me		Br	31 ^d	28 ^d		e

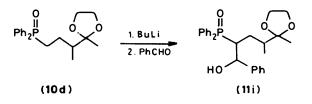
Table 1. Synthesis of γ -diphenylphosphinoyl ketals (10)

^a Time of refluxing a toluene solution of (8) with Ph₃P. ^b With NaI: without NaI, 7 days gave <5% (9a). ^c From (6a) by alkylation. ^d Mixture of diastereoisomers. ^c < 10% (9e) after 7 days: (10e) was not prepared.

Alkaline hydrolysis of the phosphinium salts (9) gave the crystalline phosphine oxides (10).

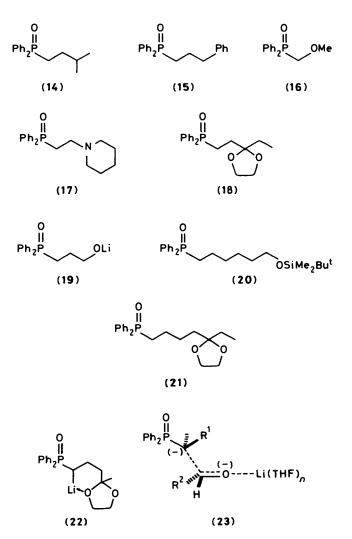

The phosphine oxide (10a) was also prepared from γ -chloro ketal (8a; Y = Cl) by an Arbuzow reaction with Ph₂POEt (this route has been used for the corresponding diethyl phosphine oxide²⁸) and the phosphine oxide (10b) by methylation (BuLi, TMEDA, MeI) of (10a) but both routes gave low yields and chromatography was required to purify the products and the route of Scheme 1 was preferred.

Synthesis of Protected γ , δ -Unsaturated Ketals.—Our stereoselective Horner-Wittig reaction²⁹ uses direct addition of aldehydes to the lithium derivatives of phosphine oxides for stereoselective formation of the *erythro* intermediates and hence Z-alkenes.³⁰ Acylation of the same lithium derivative and reduction of the resulting α -diphenylphosphinoyl ketones stereoselectively gives the *threo* intermediates and hence Ealkenes.³¹ We have already used this route to make protected β , γ -unsaturated ketones³² but stereoselectivity in the aldehyde addition was very poor. Fortunately, stereoselectivity with the present series of phosphine oxides (10) (Scheme 2) is much improved.


Treatment of the γ -diphenylphosphinoyl ketal (10a) with butyl-lithium (BuLi) in tetrahydrofuran (THF) at 0 °C gave the deep red lithium derivative which was cooled to -78 °C and treated with aldehydes to give mixtures of diastereoisomers of the adducts (11) (Scheme 2). Flash column chromatography²² (SiO₂, EtOAc) gave pure *erythro* and *threo* adducts (11). The acetaldehyde (11b) and benzaldehyde (11g) adducts were formed with good *erythro* stereoselectivity. This decreased slightly for longer unbranched chains (11c—e) and disappeared for branched chains (11f,h). The adducts (11c; R = Et) were not separated by this chromatographic system. In all other cases yields of pure crystalline *erythro* adducts (11) of *ca*. 50% were achieved.

One Horner-Wittig reaction was attempted with the methylated γ -phosphinoyl ketal (10d) whose lithium derivative added to benzaldehyde to give two diastereoisomers of adduct (11i). This compound has three chiral centres, the yield was poor (42%), and this compound was not studied further.

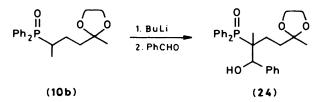
Though stereoselectivity in the addition of aldehydes to the lithium derivatives of ketal (10a) is less than that observed for many unfunctionalised compounds (Table 3), it compares favourably with that observed for the better analogy (15) and for other functionalised phosphine oxides (Table 3). Chelation of the first formed lithium derivative (22) may be responsible for the fall in stereoselectivity but it seems more likely that this, or chelation in the transition state²⁹ (23), occurs with nearer [(16)-(18), Table 2] or more active (19) functional groups, and


Scheme 2. Stereocontrolled synthesis of protected γ , δ -unsaturated ketones

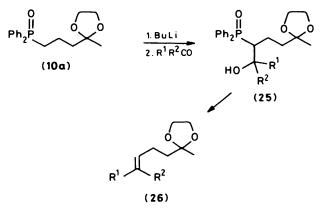
that the ketal exerts a mainly steric effect. The transition state geometry (23) probably results²⁹ from the large Ph₂PO group remaining *anti* to the developing solvated O⁻ and when R¹ contains a quaternary carbon atom, as in (10a), it begins to rival Ph₂PO in size. When the same functionality is one atom closer to the reaction site (18), separation of diastereoisomers of

Product	R	Yield (11)	erythro: threo	Yield (%) ^a erythro-(11)	Yield (%) <i>Z</i> -(12)	Yield (%) ^a <i>threo</i> -(11)	Yield (° ₀) <i>E-</i> (12)
(11a)	Н	68			63 <i>^b</i>		63 ^b
(11b)	Me	75	3.2:1	57	76	18	80
(11c)	Et	62	2.5:1	с	81 °	с	81 °
(11d)	Pr"	67	2.2:1	46	76	21	85
(11e)	Bu"	78	1.7:1	49	83	29	72
(11f)	Pri	79	1:1	39	77	40	79
(11g)	Ph	72	3.8:1	57	90	15	83
(11h)	$C_6H_{11}^{d}$	71	1:1	36	58	35	
"Yield of isolated crysta	lline diastereoise	omers. ^b Yield (12:	a): no geometry.	^c Diastereoisomers	not separated:	ratio by n.m.r. ^d	Cyclohexyl.

Table 2. Stereoselectivity of Horner-Wittig reactions with γ -diphenylphosphinoyl ketal (10a)


Horner-Wittig adducts or even estimation of their ratio by n.m.r. becomes very difficult.³²

The *threo* adducts (11) were also isolated as minor products (15-40%) from aldehyde addition, but better yields were obtained by reduction of the α -diphenylphosphinoyl ketones (13) (Table 4). Acylation³³ of the lithium derivative of γ -diphenylphosphinoyl ketal (10a) with ethyl esters gave good yields of the ketones (13). These ketones are, in fact, half-protected diketones, but no dioxolane transfer was observed on storage and they were reduced with sodium borohydride in aqueous ethanol to give three of the adducts (11b,d,g) with *threo*


selectivity. Yields were high and allowed the isolation of good yields (57-71%) of pure crystalline *threo* adducts.

Both *erythro* and *threo*-adducts (11) gave stereospecific elimination of $Ph_2PO_2^-$ on treatment with sodium hydride in dimethylformamide (DMF) for *ca*. 1 h to give γ , δ -unsaturated ketals (12). Each isomer had a different ¹H n.m.r. spectrum and in the case of (12g) and Z-(12h) the coupling constants between the vicinal olefinic protons confirmed the stereochemical assignment.

Synthesis of Trisubstituted Olefins.—Trisubstituted olefins³⁴ are best approached via ketone adducts of the simple phosphine oxide (10a), but one experiment with the methylated phosphine oxide (10b) showed that this route was also reasonable: a 1:1 mixture of the two benzaldehyde adducts was separated to give 35 and 37% yields of the two diastereoisomers (24).

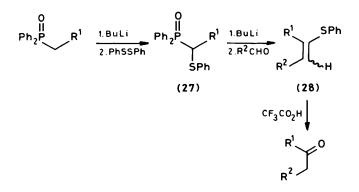
Addition of ketones to the lithium derivative of γ -phosphinoyl ketal (**10a**) was more generally satisfactory. Yields (Table 5) were reasonable, even with the highly enolisable ketones cyclopentanone and acetophenone. Symmetrical ketones gave single adducts (**25**) and unsymmetrical ketones gave a *ca*. 1:1 mixture of diastereoisomers, as they do with unfunctionalised phosphine oxides.³⁴

Table 3. Diastereoselectivity in Horner-Wittig reactions

Phosphine Oxide	Aldehyde	Isolated yield (%) adduct	erythro: threo	Yield (%) erythro	Yield (%) Z-alkene	Ref.
(14)	PhCHO	81	80:20	65	65	29
(15)	MeCHO	95	58:42	56	81	29
(16)	4-MeOC ₆ H₄	85	45:55	39	70	а
(17)	PhCHO	80	52:48	42	72	Ь
(17)	MeCHO	69	51:49	35	74	ь
(18)	MeCHO	73	с	с		32
(19)	PhCHO	92	75:25	69	95	d
(20)	EtCHO	85	64:36	55	94	d
(21)	EtCHO	71	60:40	е		f

^a C. Earnshaw, C. J. Wallis, and S. Warren, J. Chem. Soc., Perkin Trans 1, 1979, 3099. ^b D. J. Cavalla and S. Warren, Tetrahedron Lett., 1982, 23, 4505. ^c Diastereoisomers could not be separated. ^d A. D. Buss, N. Greeves, D. Levin, P. Wallace, and S. Warren, Tetrahedron Lett., 1984, 25, 357. ^e Erythro Diastereoisomer not obtained pure. ^f C. A. Cornish and S. Warren, unpublished work.

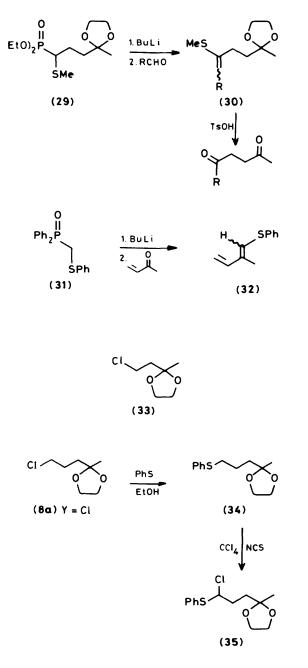
Table 4. Stereoselectivity of reduction of ketones (13)


Adduct	R	Yield (%) (13)	Yield (%) (11)	threo: erythro	Yield (%) threo-(11)	Yield (%) <i>E</i> -(12)	Yield (%) ^a erythro-(11)
(11b)	Ме	71	91	3.5:1	71	80	20
(11d)	Pr	51	81	2.4:1	57	85	24
(11g)	Ph	64 <i>°</i>	84	3.0:1	63	83	21

^a For yield of Z-(12) see Table 2. ^b 55% PhCOCl as electrophile.

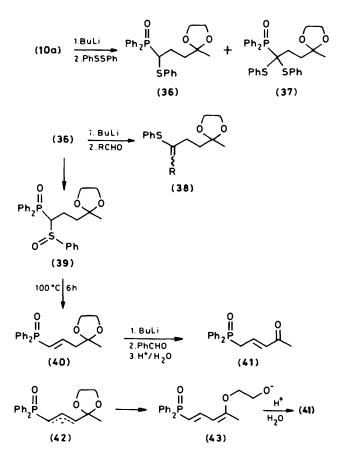
Table 5. Trisubstituted alkenes

Adduct	R ¹	R ²	Yield (%) (25)	Isomer ratio	Isomer (25A)	Isomer (26A)	Isomer (25B)	Isome (26B)
(25a)	Me	Me	70			84		84 <i>ª</i>
(25b)	Et	Et	48				_ 1	
(25c)	(CH	(CH ₂) ₄		_				
(25d)	(CH		70			89		89 <i>°</i>
(25e)	Me	Et	77	1:1	39	73	38	81
(25f)	Me	Pr ⁿ	56	1:1	28		28	
(25g)	Me	Pr ⁱ	62	0.9:1	29	82	33	67
(25h)	Me	Ph	71	1.1:1	37		34	


Elimination of $Ph_2PO_2^-$ from adducts of symmetrical ketones gave γ , δ -unsaturated ketals and each diastereoisomer of the adducts of unsymmetrical ketones (**25e**) and (**25g**) gave a distinct isomer (*E* or *Z*: geometry not definitely assigned.).

 α -(*Phenylthio*)alkylphosphine Oxides.—We have used α -phenylthioalkyldiphenylphosphine oxides (27) to make allyl

sulphides (28) and hence ketones.³⁵ Mikolajczyk ³⁶ has used the α -(methylthio)phosphonate (29) to synthesise the masked 1,4-diketones (30), unmasked simply on treatment with toluene-*p*-sulphonic acid (TsOH) and converted into cyclopentenones. We have prepared the analogous γ -phenylthio- γ -phosphinoyl ketal (36) by sulphenylation of the γ -phosphinoyl ketal (10a) and confirmed that it too can be used in the synthesis of masked 1,4-diketones (38).


Several attempts to make the sulphenylated phosphine oxide (36) failed. Attempted Michael addition of phenylthiomethyldiphenylphosphine oxide (31) to butenone gave only the 1-phenylthio diene (32) in 86% yield. We have previously made 1-phenylthio dienes from γ -phenylthioallylphosphine oxides.³⁷ Attempted alkylation of the same phosphine oxide (31) with β chloro ketal (33) gave starting material. The phenylthio ketal (34) gave (35) by α -chlorination³⁸ with *N*-chlorosuccinimide (NCS), but an attempted Arbuzow reaction with Ph₂P(O)Et³⁹ failed. Direct sulphenylation of the lithium derivative of the γ -diphenylphosphinoyl ketal (10a) with diphenyl disulphide gave starting material (10a) (27%), product (36) (41%), and the bisphenylthio compound (37) (24%) which were separated by chromatography on a gram scale. Sulphenylation with PhSCI

gave (10a) (21%), (36) (46%), and (37) (14%). Evidently proton exchange between (36) and the anion of (10a) is roughly as fast as sulphenylation.

The Horner-Wittig reaction of the γ -phenylthio- γ -diphenylphosphinoyl ketal (36) with aldehydes gave good yields of the masked 1,4-diketones (38) (R = Me, 72%; Et, 75%; Prⁱ, 79%; Ph, 65%). Isolation of vinyl sulphides rather than adducts analogous to (11) is normal with α -phenylthioalkylphosphine oxides, *e.g.* (31), even when the counter-ion is lithium, as the PhS group accelerates the elimination of Ph₂PO₂^{-.35} The adducts can be isolated at low temperature.⁴⁰

Oxidation to the sulphoxide (39) and thermal elimination gave the vinyl phosphine oxide (40). We had hoped to use the anion (42) as a γ -extended enolate⁴¹ but treatment with BuLi followed by benzaldehyde gave only the enone (41). Presumably elimination gives the dienol ether (43) which hydrolyses to the enone (41) on work-up.

Experimental

M.p.s were determined on a Reichart Kofler block and are uncorrected. N.m.r. spectra were recorded for solutions in deuteriochloroform, unless otherwise stated, on Varian Associates HA 100D (100 MHz), EM 390 (90 MHz), EM 360A (60 MHz), and CFT 20 (80 MHz) machines. I.r. spectra were obtained for chloroform solutions, thin films, or Nujol mulls on a Perkin-Elmer 257 or 297 spectrophotometer. Mass spectra were run on A.E.I. MS902 and MS30 spectrometers. Highresolution mass spectra were recorded using a DS 50 S data system. Diastereotopic protons are marked with an asterisk.

T.l.c. was performed on silica GF_{254} (0.25 mm) plates, p.l.c. on silica GF_{254} (1 mm) plates. Visualisation was by u.v., iodine, or vanillin spray (for alcohols). Column chromatography was performed on Merck Silica Kieselgel 60, either on 60–230 mesh or 230–400 mesh for flash chromatography.²²

THF refers to freshly distilled dry tetrahydrofuran; distilled off lithium aluminium hydride directly into the reaction vessel. Ether refers to dry diethyl ether, distilled off lithium aluminium hydride and stored over sodium wire. EtOAc refers to distilled ethyl acetate. TMEDA refers to dry tetramethylethylenediamine, over calcium hydride. MCPBA refers to *m*-chloroperbenzoic acid (100%, as supplied by B.D.H. Chemicals). TsOH refers to toluene-*p*-sulphonic acid monohydrate (microanalytical grade, ex. B.D.H. Chemicals). BuLi refers to n-butyllithium (15% solution in hexane).

3-Acetyldihydrofuran-2-(3H)-one (**6a**; $R^1 = R^2 = H$).—In a three-necked, 2-1 flask fitted with a thermometer and mechanical stirrer immersed in a cooling bath at 0 °C, sodium hydroxide (40 g, 1.0 mol) was dissolved in water (300 ml). After dissolution, ethanol (110 ml) was added. The stirred solution was cooled to -5 °C, and a cooled mixture of ethylene oxide

(44.0 g, 1.0 ml) and methyl acetoacetate (116.0 g, 1.0 mol) added dropwise over 2 h so that the internal temperature remained in the range -5 °C to 0 °C. The solution was then stirred for 48 h so that the temperature remained in this range. Glacial acetic acid (60.0 g, 1.0 mol) was added and the solution extracted with benzene (2 × 100 ml, 2 × 50 ml). The combined extracts were evaporated under reduced pressure. The residue was distilled to give the lactone (**6a**) (99.8 g, 78%) as a clear liquid, b.p. 125— 128 °C/15 mmHg (lit.,²⁵ 107—108 °C/5 mmHg), v_{max}.(film) 1 770 and 1 710 cm⁻¹; δ (CDCl₃) 4.01 (2 H, t, J 5.5 Hz, CH₂O), 3.55 (1 H, dd, J 8, 9 Hz, CHCH₂), 2.25 (2 H, complex AB systems, CHCH₂CH₂), and 2.0 (3 H, s, MeCO).

3-Acetyl-5-methyldihydrofuran-2(3H)-one (**6b**; $\mathbf{R}^{1} = \mathbf{H},$ $R^2 = Me$).—To a cooled solution of sodium (9.2 g, 0.4 mol) in absolute ethanol (150 ml), ethyl acetoacetate (52.0 g, 0.4 mol) was added rapidly. The solution was cooled in an ice bath and 2-methyloxirane (propylene oxide) (23.2 g, 0.4 mol) added dropwise over 30 min. After being stirred at 0 °C overnight, the solution was allowed to warm to room temperature and stirred for 4 h. The solvent was removed under reduced pressure, and the residue neutralised with aqueous acetic acid (1:1). The solution was extracted with ether $(4 \times 50 \text{ ml})$, dried (Na_2SO_4) , and evaporated under reduced pressure. The residue was distilled to give the lactone (6b) (31.25 g, 55%) as a clear liquid, b.p. 130—134 °C/15 mmHg (lit.,⁴¹ 112 °C/11 mmHg), v_{max}.(film) 1 775 and 1 710 cm⁻¹; δ (CDCl₃) 4.4 (1 H, m, CHMe), 3.7 (1 H, dd, J 8, 9 Hz, COCHCO), 2.5 and 2.10 (2 H, complex AB system, CHCH^{*}₂CH), 2.12 (3 H, s, MeCO), and 1.15 (3 H, d, J 6 Hz, MeCH).

The following were prepared in a similar way.

3-Acetyl-5-ethyldihydrofuran-2(3H)-one (6c; $R^1 = H$, $R^2 = Et$). From ethyl acetoacetate (28.6 g, 0.22 mol) and 2-ethyloxirane (butylene oxide) (15.9 g, 0.22 mol), as a colourless liquid (14.1 g, 42%), b.p. 180 °C (oven temp.)/20 mmHg (lit.,⁴² 98— 103 °C/0.3 mmHg), v_{max} (film) 1 770 and 1 710 cm⁻¹; δ (CDCl₃) 4.27 (1 H, sym m, MeCHO), 3.72 (1 H, dd, J7, 9 Hz, COCHCO), 2.42 and 2.09 (2 H, complex AB system, CHCH⁺₂CH), 2.08 (3 H, s, MeCO), 1.92 and 1.82 (2 H, complex AB system, CHCH₂Me), and 0.93 (3 H, t, J7 Hz, CH₂Me).

3-Acetyl-3-methyldihydrofuran-2(3H)-one (**6d**; $R^1 = Me$, $R^2 = H$). A benzene solution of sodium 2-methylbutan-2-olate (1.5m; 325 ml) was added dropwise to a stirred mixture of the lactone (**6a**) (64.0 g, 0.5 mol) and methyl iodide (78.0 g, 0.55 mol) at room temperature. The solution was stirred for 24 h and water (200 ml) added. The solution was separated and the aqueous phases extracted with benzene (3 × 50 ml). The combined organic phases were dried (Na₂SO₄) and evaporated. The residue was distilled to give the lactone (**6d**) as a colourless liquid (51.5 g, 72%), b.p. 120–124 °C/17 mmHg (lit.,⁴³ 128 °C/20 mmHg), v_{max} (soln.) 1 770 and 1 710 cm⁻¹; δ (CDCl₃) 4.10 and 4.03 (2 H, complex AB system, CH₂O), 2.7 and 2.4 (2 H, complex AB system, CH₂CH₂O), 2.10 (3 H, s, MeCO), and 1.3 (3 H, s, MeCCOMe).

5-Chloropentan-2-one (7a; Y = Cl).—This compound was prepared by the published method from the lactone (6; $\mathbb{R}^1 = \mathbb{H}$) as a colourless liquid, (88%), b.p. 71—74 °C/21 mmHg (lit.,^{27a.44} 70—71 °C/20 mmHg), v_{max}.(film) 1 715 cm⁻¹; δ (CDCl₃) 3.50 (2 H, t, J 7 Hz, CH₂Cl), 2.60 (2 H, t, J 7 Hz, COCH₂), 2.05 (3 H, s, MeCO), and 1.85 (2 H, quintet, J 7 Hz, CH₂CH₂Cl).

The following were made in a similar manner.

5-Bromopentan-2-one (7a; Y = Br). From the lactone (6a) and hot aqueous hydrobromic acid, the bromide was obtained as a pale yellow liquid (73%), b.p. 87–89 °C/25 mmHg (lit.,^{27b} 79–81 °C/21 mmHg), v_{max} (film) 1 710 cm⁻¹; δ (CDCl₃) 3.35 (2 H, t, J 6.5 Hz, CH₂Br), 2.70 (2 H, t, J 7 Hz, COCH₂), 2.10 (3 H, s, MeCO), and 2.0 (2 H, m, CH₂CH₂CH₂Br).

5-Iodopentan-2-one (7a; Y = I). The lactone (6a) and aqueous hydriodic acid gave the iodide as a yellow liquid (68%), b.p. 101--106 °C/17--20 mmHg (lit.^{2.27d.e} 94 °C/14 mmHg), v_{max} .(soln.) 1 710 cm⁻¹; δ (CDCl₃) 3.30 (2 H, t, J 6.5 Hz, CH₂I), 2.75 (2 H, t, J 7.5 Hz, COCH₂), 2.25 (3 H, s, MeCO), and 2.10 (2 H, m, CH₂CH₂CH₂I).

5-Chlorohexan-2-one (7b; Y = Cl). The lactone (6b) in aqueous hydrochloric acid gave the chloride as a colourless liquid (91%), b.p. 80 °C/13 mmHg, v_{max} (film) 1 710 cm⁻¹; δ (CDCl₃) 3.85 (1 H, m, CHCl), 2.50 (2 H, t, J 7 Hz, COCH₂), 1.95 (3 H, s, MeCO), 1.8 (2 H, complex AB system, CH₂CHCl), and 1.35 (3 H, d, J 6 Hz, MeCH); m/z 134, 136 (M⁺, 15, 5%), 76, 78 (C₃H₅Cl⁺, 25%), and 43 (MeCO⁺, 100%).

5-Bromohexan-2-one (7b; Y = Br). The lactone (6b) in aqueous hydrobromic acid gave the bromide as a colourless liquid (80%), b.p. 102—104 °C/14 mmHg, v_{max} .(film) 1 710 cm⁻¹, δ (CDCl₃) 4.32 (1 H, m, CHBr), 2.52 (2 H, t, J 7 Hz, COCH₂), 2.21 (3 H, s, MeCO), 1.68 (2 H, complex AB system, CH₂CHBr), and 1.2 (3 H, d, J 7 Hz, MeCH); m/z 178, 180 (M⁺, 9, 8%), 99 (M - Br, 14%), and 43 (MeCO⁺, 100%).

5-Bromoheptan-2-one (7c; Y = Br). The lactone (6c) and aqueous hydrobromic acid gave the bromide as a pale yellow liquid (78%), b.p. 128—133 °C/15 mmHg, v_{max} (soln.) 1 710 cm⁻¹; δ (CDCl₃) 4.2 (1 H, m, CHBr), 2.4 (2 H, t, J 6.5 Hz, COCH₂), 2.2 (3 H, s, MeCO), 1.8 (2 H, complex AB system, CH₂CH⁺₂CHBr), 1.5 (2 H, complex AB system, MeCH⁺₂CHBr), and 0.9 (3 H, t, J 7.3 Hz, CH₂Me); m/z 192, 194 (M⁺, 2, 2.5%), 113 (M - Br, 45%), and 43 (MeCO⁺, 100%).

5-Chloro-3-methylpentan-2-one (7d; Y = Cl). The lactone (6d) in aqueous hydrochloric acid gave the chloride as a colourless liquid (83%), b.p. 67—70 °C/15 mmHg (lit.,⁴⁴ 64— 69 °C/13—17 mmHg), v_{max} (soln.) 1 710 cm⁻¹; δ (CDCl₃) 3.50 (2 H, t, J 6.5 Hz, CH₂Cl), 2.65 (1 H, m, CHMe), 2.08 (3 H, s, MeCO), 1.93 and 1.60 (2 H, complex AB systems, CHCH²-CH₂Cl), and 1.05 (3 H, d, J 7 Hz, MeCH); m/z 134, 136 (M⁺, 17, 5%), 99 (M - Cl, 8%), 62, 64 (C₂H₃Cl⁺, 19%), and 43 (MeCO⁺, 100%).

5-Bromo-3-methylpentan-2-one (7d; Y = Br). The lactone (6d) in aqueous hydrobromic acid gave the bromide as a colourless liquid (61%), b.p. 98—100 °C/19 mmHg (lit.,⁴⁴ 68— 71 °C/5 mmHg), v_{max} . 1 715 cm⁻¹; δ (CDCl₃) 3.36 (2 H, t, J 7 Hz, CH₂Br), 2.58 (1 H, m, CHMe), 2.14 (3 H, s, MeCO), 1.82 and 1.72 (2 H, complex AB system, CHCH^{*}₂CH₂Br), and 1.07 (3 H, d, J 7 Hz, MeCH); m/z 178, 180 (M⁺, <1%), 163, 165 (M – Me, 4%), 106/108 (C₂H₃Br⁺, 10%), 99 (M – Br, 70%), 84 (C₅H₈O⁺, 41%), and 43 (MeCO⁺, 100%).

5-Bromo-3-methylhexan-2-one (7e; Y = Br). The lactone (6e) in hydrobromic acid gave the bromide as a yellow liquid (31%, as a mixture of diastereoisomers), b.p. 88—91 °C/16 mmHg, v_{max} . 1 715 cm⁻¹; δ (CDCl₃) 4.21 (1 H, m, CHBr), 2.47 (1 H, m, MeCH), 2.14 (3 H, s, MeCO), 1.8—1.55 (2 H, m, CHCH₂CH), and 1.13 and 1.07 (2 × 3 H, d, MeCHBr and MeCHCO); m/z 192, 194 (M⁺, 2, 2%), 114 (M - Br, 40%), 99 (C₆H₁₀O⁺, 28%), and 43 (MeCO⁺, 100%).

5-Chloropentan-2-one Ethylene Acetal (8a; Y = Cl).—A solution of the ketone (7a; Y = Cl) (60.0 g, 0.49 mol), ethylene glycol (31.0 g, 0.50 mol), and TsOH (100 mg) in toluene (400 ml) was heated at reflux for 24 h under a Dean-Stark trap. After being cooled, the solution was poured into aqueous sodium hydrogen carbonate (1% soln.; 200 ml). The organic phase was separated and the aqueous phase extracted with toluene (2 × 50 ml). The combined organic phases were washed with water (2 × 50 ml), dried (Na₂SO₄), and evaporated under reduced pressure, to give the ethylene acetal (8a; Y = Cl) as a colourless liquid (66.9 g, 83%), b.p. 95–99 °C/21 mmHg (lit,⁴⁸ 73–76 °C/7 mmHg), v_{max} (film) 1 060 cm⁻¹ (C-O); δ (CDCl₃) 3.78 (4 H, s, OCH₂CH₂O), 3.5 (2 H, t, J 6.5 Hz, CH₂Cl), 1.6–2.2

(4 H, m, $CH_2CH_2CH_2CI$), and 1.31 (3 H, s, MeC); m/z 164, 166 (M^+ , 1, 0.4%), 149, 151 (M – Me, 100, 35%), and 86 ($C_4H_6O_2^+$, 15%).

The following were prepared in a similar manner.

5-Bromopentan-2-one ethylene acetal (8a; Y = Br). As a colourless liquid (72%), b.p. 103–105 °C/20 mmHg (lit.,^{27b} 102–105 °C/20 mmHg), v_{max} (film) 1 060 cm⁻¹ (C–O); δ (CDCl₃) 3.85 (4 H, s, OCH₂CH₂O), 3.4 (2 H, t, J 6.5 Hz, CH₂Br), 1.6–2.2 (4 H, m, CH₂CH₂Br), and 1.3 (3 H, s, MeC); *m/z* 208, 210 (*M*⁺, absent), 193, 195 (*M* – Me, 100%), 129 (*M* – Br, 41%), and 86 (C₄H₆O₂⁺, 8%).

5-lodopentan-2-one ethylene acetal (8a; Y = I). As a dark brown liquid (70%), b.p. 105 °C/0.2 mmHg (lit.,² 76 °C/0.05 mmHg), δ (CDCl₃) 3.8 (4 H, s, OCH₂CH₂O), 3.2 (2 H, t, J 6.5 Hz, CH₂I), 1.6–2.2 (4 H, m, CH₂CH₂CH₂Br), and 1.3 (3 H, s, MeC); *m*/z 256 (*M*, absent), 241 (*M* – Me, 100%), 155 (C₂H₄I⁺, 20%), 129 (*M* – I, 75%), 87 (*M* – CH₂CH₂CH₂I, 35%), and 86 (C₄H₆O₂⁺, 30%).

5-Chlorohexan-2-one ethylene acetal (**8b**; Y = Cl). As a colourless liquid (80%), b.p. 95 °C/12.5 mmHg, v_{max} .(film) 1 075 cm⁻¹ (C-O); δ (CDCl₃) 3.7 (4 H, s, OCH₂CH₂O), 3.45 (1 H, m, CHCl), 1.4—1.8 (4 H, m, CH₂CH₂CHCl), 1.35 (3 H, d, J 6 Hz, MeCHBr), and 1.15 (3 H, s, MeC); m/z 178, 180 (M⁺, 5.2%), 163, 165 (M - Me, 100, 35%), 143 (M - Cl, 20%), and 86 (C₄H₆O₂⁺, 10%).

5-Bromohexan-2-one ethylene acetal (8b; Y = Br). As a yellow-orange liquid (64%), b.p. 126–128 °C/11 mmHg, v_{max} (film) 1 065 cm⁻¹ (C-O); δ (CDCl₃) 3.83 (4 H, s, OCH₂CH₂O), 3.42 (1 H, m, CHBr), 1.36–1.72 (4 H, m, CH₂CH₂CHBr), 1.24 (3 H, d, J 6.3 Hz, MeCHBr), and 1.12 (3 H, s, MeC); m/z 221, 223 (M⁺, <1%), 206, 208 (M – Me, 100%), and 142 (M – Br, 75%).

5-Bromoheptan-2-one ethylene acetal (8c; Y = Br). As an orange liquid (58%), b.p. 114–118 °C/3 mmHg, v_{max} (soln.) 1 050 cm⁻¹ (C–O); δ (CDCl₃) 3.84 (4 H, s, OCH₂CH₂O), 3.5–3.3 (1 H, m, CHBr), 1.8–1.2 (6 H, m, CH₂CH⁺₂CHBrCH⁺₂), 1.22 (3 H, s, MeC), and 0.96 (3 H, t, J 7 Hz, MeCH₂); m/z 235, 237 (M⁺, absent), 220, 222 (M – Me, 100%), 156 (M – Br, 80%), 142 (C₈H₁₅O₂⁺, 10%), and 86 (C₄H₆O₂⁺, 15%).

5-Chloro-3-methylpentan-2-one ethylene acetal (**8d**; Y = Cl). As a colourless liquid (69%), b.p. 52—57 °C/1.3 mmHg (lit.,⁴⁴ 66—71 °C/3 mmHg), v_{max} (film) 1 080 cm⁻¹ (C-O); δ (CDCl₃) 3.7 (4 H, s, OCH₂CH₂O), 3.55 (2 H, t, J 6.5 Hz, CH₂Cl), 1.5—1.25 (3 H, m, MeCHCH⁺₂), 1.3 (3 H, s, MeC), and 1.0 (3 H, d, J 7 Hz, MeCH); m/z 208, 210 (M⁺, 6, 2%), 193, 195 (M – Me, 100%), 178, 180 (C₆H₉O₂Cl⁺, 15, 5%), and 87 (C₄H₇O₂⁺, 35%).

5-Bromo-3-methylpentan-2-one ethylene acetal (8d; Y = Br). As a brown liquid (49%), b.p. 77—82 °C/4 mmHg (lit.,⁴⁴ 71— 74 °C/3 mmHg), v_{max} (film) 1 050 cm⁻¹; δ (CDCl₃) 3.8 (4 H, s, OCH₂CH₂O), 3.35 (2 H, t, J 7 Hz, CH₂Br), 1.5—1.1 (6 H, m, including s at 1.25 p.p.m., CHCH^{*}₂ and MeC), and 0.95 (3 H, d, J 7 Hz, MeCH).

5-Bromo-3-methylhexan-2-one ethylene acetal (**8e**; Y = Br). As a yellow liquid (28%, a mixture of diastereoisomers), b.p. 93—97 °C/1.2 mmHg, v_{max} (film) 1 060 cm⁻¹; δ (CDCl₃) 3.4—3.7 (4 H, sym m, OCH₂CH₂O), 3.3 (1 H, m, CHBr), 1.6—1.1 (6 H, m, including s at 1.2 p.p.m., *Me*C and CHCH₂CHBr), 0.97 (3 H, d, J 6.5 Hz, *Me*CHBr), and 0.92 (3 H, d, J 7.5 Hz, *Me*CHCH₂Br).

5-Diphenylphosphinoylpentan-2-one Ethylene Acetal (10a).— (a) A solution of the ethylene acetal (8a; Y = Br) (62.7 g, 0.3 mol) and triphenylphosphine (78.0 g, 0.297 mol) in toluene (500 ml) was heated at reflux for 2 days. The crystalline precipitate was filtered off and washed with ether (3 × 100 ml). The solid was heated at reflux with aqueous sodium hydroxide (30% w/v; 400 ml) for 2 h after which the apparatus was adapted for distillation and benzene (25 ml, 85% theoretical) distilled out. The solution was cooled, and the organic phase separated. The aqueous phase was extracted with ethyl acetate $(3 \times 100 \text{ ml})$. The combined organic phases were dried (Na_2SO_4) and evaporated under reduced pressure to give the *phosphine oxide* (10a) (71.3 g, 72%) as needles, m.p. 94.5–95 °C (from EtOAc), $R_{\rm F}$ 0.09 (EtOAc), $v_{\rm max}$ (Nujol) 1 440 (P–Ph) and 1 165 cm⁻¹ (P=O); δ (CDCl₃) 7.2–8.0 (10 H, m, Ph₂PO), 3.8 (4 H, s, OCH₂CH₂O), 2.3 (2 H, dt, $J_{\rm HH}$ 7 Hz, $J_{\rm HP}$ 10 Hz, CH_2 P), 1.70–

1.75 ($\stackrel{-}{4}$ H, m, CH₂CH₂CH₂P), and 1.2 (3 H, s, MeC); m/z 330 (M^+ , 8%), 244 (Ph₂POCH₂CH₂CH₂⁺, 27%), 201 (Ph₂PO⁺, 55%), and 87 (C₄H₇O₂⁺, 100%) (Found: M^+ , 330.1398; C₁₉H₂₃O₃P requires M, 330.1385).

(b) The same compound was also prepared from the iodide (**8a**; Y = I) with triphenylphosphine heated at reflux for 2 days, followed by hydrolysis, in 54% yield.

(c) Reaction of the chloride (8a; Y = Cl) with triphenylphosphine at 110 °C gave very low yields of the corresponding phosphonium salt even after 7 days. Hydrolysis was not attempted.

(d) A solution of the chloride (8a; Y = Cl) (8.2 g, 0.05 mol), sodium iodide (7.50 g, 0.05 mol), and triphenylphosphine (13.1 g, 0.05 mol) was heated at reflux in toluene (200 ml) for 3 days. An oil slowly separated. The oil was hydrolysed with sodium hydroxide as above, to give the phosphine oxide (10a) in 65% yield.

(e) The chloride (8a; Y = Cl) (16.45 g, 10 mmol) and ethyl diphenylphosphinite (23.0 g, 10 mmol) were heated at 140 °C overnight. Cooling gave a gummy solid which was purified by chromatography [SiO₂/EtOAc-MeOH (9:1)] to give the phosphine oxide (10a) (18.5 g, 56%).

5-Diphenylphosphinoylhexan-2-one Ethylene Acetal (10b).— From the ethylene acetal (8b; Y = Br) (4.45 g, 20 mmol) and triphenylphosphine (5.12 g, 20 mmol) in toluene (50 ml) heated at reflux for 5 days, a crystalline phosphonium salt was obtained; this, after hydrolysis as above, gave the *phosphine* oxide (10b) as off-white needles (2.56 g, 38%), m.p. 108—110 °C (from EtOAc), R_F 0.06 (EtOAc), v_{max} (Nujol) 1 440 (P–Ph) and 1 165 cm⁻¹ (P=O); δ (CDCl₃) 7.98—7.11 (10 H, m, Ph₂PO), 3.78 (4 H, s, OCH₂CH₂O), 2.40 (1 H, m, CHP), 2.10—1.50 (4 H, m, CH₂CH⁺₂CHP), 1.23 (3 H, s, MeC), and 1.18 (3 H, dd, J_{PH} 16 Hz, J_{HH} 7 Hz, PCH*Me*); *m/z* 344 (*M*⁺, 3%), 256 (Ph₂POCH-MeCH₂CH₂⁺, 15%), and 201 (Ph₂PO⁺, 100%).

5-Diphenylphosphinoylheptan-2-one Ethylene Acetal (10c).— The bromo-acetal (8c; Y = Br) (2.36 g, 10 mmol) and triphenylphosphine (2.61 g, 10 mmol) in toluene (50 ml) were heated at reflux for 4 days to give a crystalline precipitate, hydrolysis of which gave the phosphine oxide (10c) as needles (1.54 g, 43%), m.p. 112—114 °C (from EtOAc-hexane, 9:1), R_F 0.07 (EtOAc), v_{max} .(Nujol) 1 440 (P-Ph) and 1 160 cm⁻¹ (P=O); δ (CDCl₃) 8.0—7.1 (10 H, m, Ph₂PO), 3.8 (4 H, s, OCH₂CH₂OH₂O), 2.3 (1 H, m, CHP), 2.0—1.5 (6 H, m, CH^{*}₂CH^{*}₂CHPCH^{*}₂), 1.2 (3 H, s, MeC), and 0.95 (3 H, dd, J_{HH} 7 Hz, J_{PH} 4 Hz, CH₂Me).

5-Diphenylphosphinoyl-3-methylpentan-2-one Ethylene Acetal (10d).—The bromo ketal (8d; Y = Br) (2.50 g, 11.2 mmol) and triphenylphosphine (2.90 g, 11.0 mmol) in toluene (30 ml) heated at reflux for 2 days gave a crystalline precipitate, which was filtered off and hydrolysed in alkaline solution to give the phosphine oxide (10d) (1.96 g, 52%) as needles, m.p. 117—119 °C (from EtOAc), R_F 0.10 (EtOAc), v_{max} .(Nujol) 1 440 (P–Ph), 1 440 (P–Ph), 1 165 (P=O), and 1 055 cm⁻¹ (C–O); δ (CDCl₃) 7.9—7.0 (10 H, m, Ph₂PO), 3.8 (4 H, s, OCH₂CH₂O), 2.4—2.2 (2 H, m, CH₂P), 1.8—1.4 (3 H, m, MeCHCH^{*}₂), 1.2 (3 H, s, MeC), and 0.95 (3 H, d, J 7 Hz, MeCH); m/z 344 (M⁺, 1%), 329 (M – Me, 55%), 257 (Ph₂POCH₂CHCHMe⁺, 20%), and 201 (Ph₂PO⁺, 100%).

Alkylation of 5-Diphenylphosphinoylpentan-2-one Ethylene Acetal (10a).-BuLi (7.0 ml, 1.08 mmol) was added to a solution of the phosphine oxide (10a) (330 mg, 1.0 mmol) in a mixture of THF (15 ml) and TMEDA (130 mg, 1.12 mmol) at 0 °C under nitrogen. After 15 min, the solution was cooled to -78 °C, and methyl iodide (0.5 ml, excess) added. The solution was allowed to warm to room temperature and was then diluted with water (5 ml). The organic phase was separated, and the aqueous phase washed with ether (5 \times 10 ml). The combined organic phase was dried (Na_2SO_4) and evaporated under reduced pressure to give a pale yellow oil. P.l.c. (EtOAc-MeOH, 9:1) gave the phosphine oxide (10b) (103 mg, 30%) and 5-diphenylphosphinoyl-5-methylhexan-2-one ethylene acetal (39 mg, 11%), as pale yellow needles, m.p. 84-87 °C, δ(CDCl₃) 7.9-7.2 (10 H, m, Ph₂PO), 3.7 (4 H, s, OCH₂CH₂O), 1.8-1.5 (4 H, m, CH₂CH₂CP), 1.25 (3 H, s, MeC), and 1.15 (6 H, d, J_{PH} 15 Hz, Me₂CP).

5-Diphenylphosphinoyl-6-hydroxyhexan-2-one Ethylene Acetal (11a; R = H).—BuLi (3.5 ml, 5.5 mol) was added to a solution of the phosphine oxide (10a) (1.65 g, 5.0 mmol) in THF (25 ml) under nitrogen at 0 °C. After 15 min, the orange solution was cooled to -78 °C and paraformaldehyde (0.5 g, excess) added. The decolourised solution was allowed to warm to room temperature when aqueous ammonium chloride (saturated, 10 ml) was added. The solution was extracted with ether (3×30) ml, 2×50 ml) and the combined organic phases were dried (Na_2SO_4) and evaporated under reduced pressure to give, after chromatography, (SiO₂/EtOAc), the alcohol (11a) as plates (1.22 g, 68%), m.p. 99-101 °C (from EtOAc), R_F 0.55 (EtOAc-MeOH, 9:1), v_{max} (Nujol) 3 300 (O-H), 1 440 (P-Ph), 1 165 (P=O), and 1 055 cm⁻¹ (C-O); δ (CDCl₃) 7.9–7.1 (10 H, m, Ph₂PO), 4.3 (1 H, br s, OH), 4.2-3.9 (2 H, complex AB system, CH₂OH), 3.8-3.6 (4 H, sym m, OCH₂CH₂O), 2.2-1.4 (5 H, m, CH₂CH₂CHP), and 1.2 (3 H, s, MeC).

5-Diphenylphosphinoyl-6-hydroxyheptan-2-one Ethylene Acetal (11b; R = Me).—In a similar manner, the lithium anion of the phosphine oxide (10a) (4.7 g, 14.2 mmol) was quenched with a solution of acetaldehyde (1.0 g, 1.6 equiv.) in THF saturated with LiBr (10 ml) to give, after chromatography (SiO₂, eluted with EtOAc), the HR_F diastereoisomer (3.03 g, 57%) as needles, m.p. 114–115 °C (from EtOAc), $R_{\rm F}$ 0.45 (EtOAc), v_{max} (Nujol) 3 320 (O-H), 1 440 (P-Ph), and 1 170 cm⁻¹ (P=O); δ(CDCl₃) 7.8-7.1 (10 H, m, Ph₂PO), 4.4-4.2 (2 H, m, including J 12, 7 Hz, CHOH), 3.7 (4 H, s, OCH₂CH₂O), 2.7 (1 H, dq, J_{HH} 7 Hz, J_{PH} 12 Hz, CHP), 1.9-1.5 (4 H, m, $CH_2CH_2^*CHP$, 1.3 (3 H, s, MeC), and 1.25 (3 H, dd, J_{HH} 7 Hz, $J_{\rm PH}$ 15 Hz, MeCH); m/z 374 (M^+ , 0.2%), 359 (M – Me, 10%), 330 (M - MeCHO, 30%), 202 (Ph_2POH^+ , 20%), and 201 $(Ph_2PO^+, 100\%)$ (Found: $M^+, 374.1655. C_{21}H_{27}O_4P$ requires M, 374.1647); and the LR_F diastereoisomer (0.95 g, 18%) as needles, m.p. 124–126 °C (from EtOAc), R_F 0.37 (EtOAc), v_{max} (Nujol) 3 300 (O-H), 1 440 (P-Ph), 1 165 (P=O), and 1 055 1 (C–O); δ (CDCl₃) 7.85–7.15 (10 H, m, Ph₂PO), 4.7 (1 H, br s, OH), 4.3 (1 H, m, including J 7 Hz, CHOH), 3.8 (4 H, s, OCH₂CH₂O), 2.45 (1 H, m, CHP), 1.9-1.5 (4 H, m, CH₂CH^{*}₂CHP), 1.25 (3 H, s, MeC), and 1.2 (3 H, dd, J_{HH} 7 Hz, $J_{\rm PH}$ 12 Hz, MeCH); m/z 374 (M⁺, 0.7%), 359 (M - Me, 30%), 330 (M - MeCHO, 20%), and 201 (Ph_2PO^+ , 100%) (Found: M^+ , 374.1650. C₂₁H₂₇O₄P requires *M*, 374.1647).

In a similar way the following were obtained.

5-Diphenylphosphinoyl-6-hydroxyoctan-2-one ethylene acetal (11c, R = Et). The phosphine oxide (10a) (990 mg, 3 mmol), BuLi (2.10 ml, 3.25 mmol), and propionaldehyde (0.5 ml, excess) gave the phosphine oxide (11c) as a mixture of diastereoisomers (721 mg, 62%), v_{max} (soln.) 3 350 (O–H), 1 440 (P–Ph), 1 165 (P=O), and 1 050 cm⁻¹ (C–O); δ (CDCl₃) 7.7–7.3 (10 H, m, Ph₂PO), 4.55 (1 H, br s, OH), 4.1, 3.8 (1 H, 2 × m, CHOH), 3.7—3.4 (4 H, sym m, OCH₂CH₂O), 1.74—1.37 (7 H, m, CH₂CH^{*}₂CHCHCH^{*}₂), 1.05 and 1.00 (3 H, 2 × s, MeC), 0.84 and 0.78 (3 H, 2 × t, J 6.5, 7 Hz, MeCH₂), ratio of diastereoisomers 2.5:1 by integration; m/z 388 (M^+ , 0.5%), 373 (M - Me, 40%), 330 (M - EtCHO, 35%), and 201 (Ph₂PO⁺, 100%).

5-Diphenylphosphinoyl-6-hydroxynonan-2-one ethylene acetal (11d; R = Pr). The phosphine oxide (10a) (1.50 g, 4.55 mmol), BuLi (3.2 ml, 1.1 equiv.), and butyraldehyde (1.0 ml, excess) gave, after chromatography (SiO₂, eluted with EtOAc-MeOH, 9:1), the HR_F diastereoisomer as prisms (840 mg, 46%), m.p. 121–123 °C (from EtOAc), R_F 0.62 (EtOAc-MeOH, 9:1), vmax. (Nujol) 3 320 (O-H), 1 435 (P-Ph), 1 155 (P=O), and 1 055 cm⁻¹ (C–O); δ (CDCl₃) 7.7–7.1 (10 H, m, Ph₂PO), 4.5 (1 H, s, OH), 4.3-4.1 (1 H, m, CHOH), 3.8 (4 H, s, OCH₂CH₂O), 2.1-1.4 (9 H, m, $CH_2CH_2CHCHCH_2CH_2Me$), 1.3 (3 H, s, Me), and 0.9 (3 H, t, J 7 Hz, MeCH₂); m/z 402 (M⁺, absent), 387 (M - Me, 35%), 330 (M - PrCHO, 20%), 201 (Ph_2PO^+) 100%), and the LR_F diastereoisomer as needles (383 mg, 21%), m.p. 136-140 °C (from EtOAc-hexane), R_F 0.50 (EtOAc-MeOH, 9:1), v_{max} (Nujol) 3 300 (O-H), 1 440 (P-Ph), 1 160 (P=O), and 1 050 cm⁻¹ (C-O); δ (CDCl₃) 7.9-7.3 (10 H, m, Ph2PO), 4.4-4.1 (2 H, m, CHOH), 3.8-3.6 (4 H, m, OCH2-CH₂O), 1.9–1.4 (9 H, m, $CH_2CH_2^*CHCHCH_2^*CH_2Me$), 1.3 (3 H, s, MeC), and 0.9 (3 H, t, J 7 Hz, MeCH₂); m/z 402 (M⁺, 0.4%), 387 (*M* - Me, 50%), 330 (*M* - PrCHO, 10%), and 201 $(Ph_2PO^+, 100\%)$ (Found: $M^+, 402.1961; C_{23}H_{31}O_4P$ requires M, 402.1958).

5-Diphenylphosphinoyl-6-hydroxydecan-2-one ethylene acetal (11e; $\mathbf{R} = \mathbf{B}\mathbf{u}$). The phosphine oxide (10a) (660 mg, 2 mmol), BuLi (1.4 ml, 2.16 mmol), and valeraldehyde (0.5 ml, excess), gave after chromatography (SiO₂, eluted with EtOAc), the HR_F diastereoisomer (407 mg, 49%) as needles, m.p. 122-125 °C (from EtOAc- $Pr_{2}^{i}O$), R_{F} 0.35 (EtOAc), v_{max} (Nujol) 3 300 (O-H), 1 440 (P-Ph), 1 165 (P=O), and 1 060 cm⁻¹ (C-O); δ(CDCl₃) 7.9-7.4 (10 H, m, Ph₂PO), 4.3-3.6 (6 H, m, OCH₂CH₂O, CHOH), 2.1–1.5 (9 H, m, CH₂CH^{*}₂CHCH- $CH_{2}^{*}CH_{2}Et$), 1.35–1.15 (5 H, m, including sharp s at 1.3 p.p.m., MeC, MeCH₂CH₂), and 0.9 (3 H, t, J7 Hz, MeCH₂); m/z 416 (M^+ , absent), 401 (M - Me, 70%), 387 ($M - C_2H_5$, 12%), $330 (M - BuCHO, 30\%), 202 (Ph_2POH^+, 20\%), 201 (Ph_2PO^+)$ 80%), and 87 ($C_4H_7O_2^+$, 100%); and the LR_F diastereoisomer (240 mg, 29%) as a gummy solid, m.p. 100-107 °C, R_F 0.30 (EtOAc), v_{max} (soln.) 3 340 (O-H), 1 440 (P-Ph), 1 160 (P=O), and 1 055 cm⁻¹ (C-O); δ(CDCl₃) 7.9-7.3 (10 H, m, Ph₂PO), 4.4-4.1 (m, CHOH), 3.9-3.7 (4 H, sym m, OCH₂CH₂O), 2.0—1.4 (9 H, m, $CH_2CH_2^*CHCHCH_2^*CH_2Et$), 1.28 (2 H, quintet, J7 Hz, MeCH₂), 1.20 (3 H, s, MeC), and 0.94 (3 H, t, J7 Hz, MeCH₂).

5-Diphenylphosphinoyl-6-hydroxy-7-methyloctan-2-one, ethylene acetal (11f; $\mathbf{R} = \mathbf{Pr}^{i}$). The phosphine oxide (10a) (830) mg, 2.51 mmol), BuLi (1.75 ml, 2.73 mmol), and isobutyraldehyde (1.0 ml, excess) after chromatography (SiO₂, eluting with EtOAc-MeOH, 9:1–8:2), gave the HR_F diastereoisomer (394 mg, 39%) as needles, m.p. 102-103.5 °C (from EtOAc- $Pr_{2}^{i}O$, R_{F} 0.65 (EtOAc-MeOH, 9:1), δ (CDCl₃) 7.8-7.4 (10 H, m, Ph₂PO), 4.8 (1 H, br s, OH), 4.2 (1 H, ddd, J_{HH} 6 Hz, 7 Hz, J_{HP} 16 Hz, PCH_ACHCH_B), 3.8 (4 H, s, OCH₂CH₂O), 2.3–2.1 (1 H, m, including J 6, 7 Hz, CHP), 1.7-1.4 (4 H, m, CH₂CH₂CHP), 1.35 (1 H, m, J 7 Hz, CHMe₂), 1.2 (3 H, s, MeC), and 0.9 (6 H, d, J 7 Hz, Me_2 CH); m/z 402 (M^+ , 0.5%), 387 (M – Me, 50%), 330 $(M - Pr^{i}CHO, 100\%)$, 244 $(Ph_2POC_3H_7^+, 10\%)$, and 201 $(M_{-}^{+} - 1) C_{10}^{+}, 100_{0}^{+}, 210_{-}^{+}, 100_{-}^{+}, 1$ 402.1958; and the LR_F diastereoisomer (404 mg, 40%) as needles, m.p. 137-138 °C (from EtOAc), R_F 0.55 (EtOAc-MeOH, 9:1) (Found: C, 68.8%; H, 7.89%; P, 7.8%. C₂₃H₃₁O₄P requires C, 68.64%; H, 7.76%; P, 7.7%), v_{max} (Nujol) 3 300 (O-H), 1 440

(P-Ph), and 1 165 cm⁻¹ (P=O); δ (CDCl₃) 7.9–7.4 (10 H, m, Ph₂PO), 4.5 (1 H, s, OH), 4.3–4.1 (1 H, m, including J 7, 16 Hz, CHOH), 3.8 (4 H, s, OCH₂CH₂O), 2.1–1.5 (6 H, m, CH₂CH^{*}₂CHPCHCHMe₂), 1.2 (3 H, s, MeC), and 0.9 (6 H, d, J 7 Hz, Me₂CH); m/z 402 (M⁺ absent), 387 (M – Me, 30%), 330 (M – PrⁱCHO, 60%), and 201 (Ph₂PO⁺, 100%).

5-Diphenylphosphinoyl-6-hydroxy-6-phenylhexan-2-one ethylene acetal (11g; R = Ph). The phosphine oxide (10a) (4.00 g, 12.1 mmol), BuLi (8.5 ml, 13.3 mmol), and benzaldehyde (1.5 g, 14.2 mmol) gave, after chromatography (SiO₂, eluting with EtOAc), the HR_F diastereoisomer (3.00 g, 57%) as prisms, m.p. 184—187 °C (from EtOAc), $R_{\rm F}$ 0.45 (EtOAc), $v_{\rm max.}$ (soln.) 3 320 (O-H), 1 605, 1 585 (Ph), 1 440 (P-Ph), and 1 165 cm⁻¹ (P=O); δ (CDCl₃) 7.86–7.06 (15 H, Ph₂PO and Ph), 5.16 (1 H, d, J 10 Hz, CHOH), 4.62 (1 H, br s, OH), 3.57-3.27 (4 H, sym m, OCH₂CH₂O), 2.43 (1 H, quintet, $J_{HH} = J_{PH} 5.3$ Hz, CHP), 1.74 (2 H, m including J 5.3, 6.7 Hz, CH₂CHP), 0.94 (2 H, t, J 6.7 Hz, CH₂CH₂CHP), and 0.76 (3 H, s, MeC); m/z 436 (M⁺, 5%), 329 (M - PhCHOH, 30%), and 201 (Ph₂PO⁺, 100%); and the LR_F diastereoisomer (790 mg, 15%) as needles, m.p. 197-200 °C (from EtOAc), $R_{\rm F}$ 0.35 (EtOAc), $v_{\rm max}$ (soln.) 3 350 (O-H), 1 600 (Ph), 1 440 (P-Ph), and 1 165 (P=O); δ(CDCl₃) 7.85-6.97 (15 H, m, Ph₂PO and Ph), 4.9 (1 H, dd, J_{HH} 6.5 Hz, CHOH), 4.93 (1 H, br s, CHOH), 3.74-3.40 (4 H, sym m, OCH₂CH₂O), 2.64 (1 H, dq, J_{HH} 6.5 Hz, J_{PH} 13 Hz, CHP), and 1.97-1.07 (4 H, m, CH₂CH[•]₂CHP), and 0.85 (3 H, s, MeC).

6-Cyclohexyl-5-diphenylphosphinoyl-6-hydroxyhexan-2-one ethylene acetal (11h; R = cyclohexyl). The phosphine oxide (10a) (330 mg, 1 mmol), BuLi (0.7 ml, 1.08 mmol) and cyclohexanecarbaldehyde (200 mg, 1.75 mmol) gave after p.l.c. (SiO₂, triple elution with EtOAc), the HR_F diastereoisomer (159 mg, 36%), m.p. 164—167 °C, R_F 0.37 (EtOAc), δ (CDCl₃) 7.5— 7.1 (10 H, m, Ph₂PO), 4.3 (1 H, dt, J_{HP} 16 Hz, J_{HH} 7 Hz, CHOH), 3.8—3.4 (4 H, m, OCH₂CH₂O), and 1.8—1.0 (19 H, m including sharp s at 1.2 p.p.m., MeC, CH₂CH^{*}₂CHP, cyclohexyl H); and the LR_F diastereoisomer (155 mg, 35%), m.p. 181—182 °C, R_F 0.3 (EtOAc), δ (CDCl₃) 7.5—7.1 (10 H, m, Ph₂PO), 4.6 (1 H, br s, OH), 4.3 (1 H, dt, J_{HP} 13 Hz, J_{HH} 7 Hz, CHOH), 3.7—3.4 (4 H, m, OCH₂CH₂O), and 1.8—1.0 (19 H, m including sharp s at 1.25 p.p.m., MeC, CH₂CH^{*}₂CHP, cyclohexyl H).

5-Diphenylphosphinoylheptane-2,6-dione 2-Ethylene Acetal (13b; R = Me).—BuLi (4.8 ml, 7.5 mmol) was added to a solution of the phosphine oxide (10a) (2.31 g, 7 mmol) in THF (40 ml) under nitrogen at 0 °C. After 30 min, the solution was cooled to -78 °C and ethyl acetate (0.7 g, 8 mmol) added dropwise to the orange anion over a period of 1 min. The solution was allowed to warm to room temperature, when saturated aqueous ammonium chloride (20 ml) was added. The solution was extracted with EtOAc (4 \times 50 ml) and the combined organic phases dried (Na2SO4) and evaporated under reduced pressure to give the ketone (1.85 g, 71%) as needles, m.p. 162-166 °C (from EtOAc), R_F 0.24 (EtOAc-MeOH, 9:1), v_{max} (soln.) 1 705 (C=O), 1 440 (P-Ph), and 1 180 cm⁻¹ (P=O); δ(CDCl₃) 7.9-7.4 (10 H, m, Ph₂PO), 3.8 (4 H, s, OCH₂CH₂O), 3.7 (1 H, dd, J_{HH} 7.5 Hz, J_{PH} 12 Hz, PCH), 2.35 (3 H, s, MeCO), 1.8-1.4 (4 H, m, CH₂CH^{*}₂CHP), and 1.2 (3 H, s, MeC); m/z 372 (M^+ , 8), 357 (M^- Me, 20%), 329 (M^- MeCO, 35%), and 201 (Ph₂PO⁺, 100%) (Found: M^+ , 372.1490. C₂₁H₂₅O₄P requires M, 372.1491).

The following were prepared in a similar way.

5-Diphenylphosphinoyl-6-phenylhexane-2,6-dione 2-ethylene acetal (13g). The phosphine oxide (10a) (2.31 g, 7 mmol), BuLi (4.8 ml, 7.5 mmol), and ethyl benzoate (1.2 g, 8 mmol) gave, after chromatography (SiO₂, eluted with EtOAc), the ketone (13g) (1.94 g, 64%) as needles, m.p. 194–197 °C (from EtOAc-hexane), R_F 0.20 (EtOAc) (Found: C, 72.2; H, 6.5; P, 6.95;

C₂₆H₂₇O₄P requires C, 71.9; H, 6.3; P, 7.1%), v_{max} . 1 680 (C=O), 1 430 (P-Ph), 1 180 (P=O), and 1 055 cm⁻¹ (C-O); δ (CDCl₃) 8.1—6.9 (15 H, m, Ph₂PO and PhCO), 4.0 (1 H, dd, J_{HH} 8 Hz, J_{PH} 10 Hz, PCH), 3.8—3.5 (4 H, m, OCH₂CH₂O), 2.3—1.8 (2 H, complex AB system, CH^{*}₂CHP), 1.7—1.3 (2 H, m, CH₂CH₂CHP), and 1.1 (3 H, d, J 3 Hz, MeC); m/z 434 (M⁺, 35%), 329 (M – PhCO, 70%), and 201 (Ph₂PO⁺, 100%).

Likewise, the phosphine oxide (10a) (660 mg, 2 mmol), BuLi (1.4 ml, 2.2 mmol), and benzoyl chloride (300 mg, 2.12 mmol) gave the *ketone* (13g) (477 mg, 55%) after p.l.c.

5-Diphenylphosphinoylnonane-2,6-dione 2-ethylene acetal (13d; R = Pr). The phosphine oxide (10a) (3.30 g, 10 mmol), BuLi (7.0 ml, 11 mmol), and ethyl butyrate (1.50 g, 11.5 mmol) gave, after chromatography, the ketone (13d) (2.42 g, 51%) as needles, R_F 0.18 (EtOAc), v_{max} . (Nujol) 1 705 (C=O), 1 440 (P-Ph), and 1 200 cm⁻¹ (P=O); δ (CDCl₃) 8.1—7.4 (10 H, m, Ph₂PO), 3.8 (4 H, s, OCH₂CH₂O), 3.6 (1 H, m, CHP), 2.5 (2 H, t, J 7.5 Hz, CH₂CO), 2.0—1.1 (9 H, m including sharp s at 1.2 p.p.m., MeC; CH₂CH₂CHCOCH₂CH₂Me), and 0.8 (3 H, t, J 7 Hz, MeCH₂).

Reduction of 5-Diphenylphosphinoylheptane-2,6-dione 2-Ethylene Acetal (13b).—A solution of the sodium borohydride (90 mg, 2.4 mmol) in aqueous sodium hydroxide [1M-NaOH (2 ml) and water (2 ml)] was added dropwise to a stirred solution of the ketone (13b) (1.50 g, 4 mmol) in ethanol (5 ml) at 0 °C. The solution was stirred for 30 min and then allowed to warm to room temperature. The solvent was evaporated under reduced pressure and the residue was dissolved in ether (50 ml). The solution was washed rapidly with dilute sulphuric acid (1msolution; 2×5 ml), aqueous sodium hydrogen carbonate (5%) solution; 2×20 ml), and finally with water (2×10 ml). The organic phase was dried (Na_2SO_4) and evaporated under reduced pressure to give 5-diphenylphosphinoyl-6-hydroxyheptan-2-one ethylene acetal (11b). After chromatography (SiO₂, eluting with EtOAc), the HR_F diastereoisomer (300 mg, 20%) and the LR_F diastereoisomer (1.06 g, 71%) were obtained.

The following were treated similarly.

Reduction of 5-diphenylphosphinoyl-6-phenylhexane-2,6-dione 2-ethylene acetal (13g). The ketone (1.10 g, 2.53 mmol) and sodium borohydride (55 mg, 1.5 mmol) gave, after chromatography (SiO₂, eluting with EtOAc), 5-diphenylphosphinoyl-6-hydroxy-6-phenylhexan-2-one ethylene acetal (11g) HR_F diastereoisomer (232 mg, 21%) and the LR_F diastereoisomer (695 mg, 63%).

Reduction of 5-diphenylphosphinoyldecane-2,6-dione 2-ethylene acetal (13d). The ketone (2.0 g, 4.83 mmol) and sodium borohydride (110 mg, 3.0 mmol) gave, after chromatography (SiO₂, eluting with EtOAc), 5-diphenylphosphinoyl-6-hydroxydecan-2-one ethylene acetal (11d), HR_F diastereoisomer (480 mg, 24%) and the LR_F diastereoisomer (1.145 g, 57%).

Hex-5-en-2-one Ethylene Acetal (12a).—Sodium hydride (50% in oil) (145 mg, 1.1 equiv.) was added to a solution of the alcohol (10a) (1.0 g, 2.77 mmol) in DMF (10 ml). The solution was heated at 50 °C for 1 h and then poured into a mixture of ether (30 ml) and water (20 ml). The aqueous phase was extracted with ether (2×10 ml). The combined organic phases were dried (Na₂SO₄) and evaporated under reduced pressure, to give the olefin (12a) as a colourless liquid (85 mg, 63%), b.p. 65—67 °C/25 mmHg (lit.,⁴⁶ 52 °C/14 mmHg), v_{max} (film) 1 650 (C=C) and 1 050 cm⁻¹ (C-O); δ (CDCl₃) 5.8 (1 H, m, CH=CH₂), 4.9 (2 H, complex AB system, CH=CH₂), 3.8 (4 H, s, OCH₂CH₂O), 2.1 (2 H, q, J 7 Hz, CH₂CH=CH₂), 1.7 (2 H, t, J 7 Hz, CH₂CH₂CH), and 1.2 (3 H, s, MeC).

Sometimes also isolated from the above was hex-5-en-2-one (18%), b.p. 42 °C/28 mmHg (lit.,⁴⁷ 69 °C/100 mmHg),

 v_{max} (film) 1 710 (C=O) and 1 650 cm⁻¹ (C=C); δ (CDCl₃) 5.8 (1 H, m, CH=CH₂), 5.0 (2 H, m, AB system, CH=CH₂), 2.7—2.3 (m, including t, J 7.5 Hz at 2.4 p.p.m., CH₂CH₂CH=CH₂), and 2.1 (3 H, s, CH₃CO).

In a similar way the following were prepared.

(Z)-Hept-5-en-2-one ethylene acetal Z-(12b). The HR_F diastereoisomer of alcohol (11b) (1.38 g, 3.69 mmol) and sodium hydride (50% in oil) (177 mg, 3.70 mmol) gave the olefin Z-(12b) as a colourless liquid (437 mg, 76%), b.p. 72–76 °C/20 mmHg (lit.,⁵¹ 70–75 °C/18 mmHg, v_{max} (film) 1 650 (C=C) and 1 055 cm⁻¹ (C-O); δ (CDCl₃) 5.35 (2 H, m, CH=CH), 3.85 (4 H, s, OCH₂CH₂O), 2.4–1.4 (7 H, m, CH₂CH₂CH=CHMe), and 1.25 (3 H, s, MeC).

Oct-5-en-2-one ethylene acetal (12c). A mixture of the diastereoisomers of the alcohol (11c) (500 mg, 1.29 mmol) and sodium hydride (62 mg, 1.30 mmol) gave a mixture of olefins (177 mg, 81%), b.p. 75–82 °C/12 mmHg (lit.,⁴ Z: 74–80 °C/12 mmHg, *E*: 82–83 °C/10 mmHg), v_{max} (film) 1 660 (C=C) and 1 060 cm⁻¹ (C-O); δ (CDCl₃) 5.4–5.2 (2 H, m, CH=CH), 3.8 (4 H, br s, OCH₂CH₂O), 2.2–1.4 (6 H, m, CH₂CH₂CH=CHCH₂), 1.2 (3 H, s, MeC), and 0.95 (3 H, t, *J* 7.5 Hz, *Me*CH₂).

(Z)-Non-5-en-2-one ethylene acetal Z-(12d). The H $R_{\rm F}$ diastereoisomer of the alcohol (11d) (700 mg, 1.75 mmol) and sodium hydride (84 mg, 1.75 mmol) gave the olefin Z-(12d) as a colourless liquid (245 mg, 76%), b.p. 87–90 °C/14 mmHg, $v_{\rm max}$ (soln.) 1 650 cm⁻¹ (C=C); δ (CDCl₃) 5.2 (2 H, m, CH=CH), 3.85 (4 H, s, OCH₂CH₂O), 2.4–1.3 (8 H, m, CH₂CH₂-CH=CHCH₂CH₂), 1.2 (3 H, s, MeC), and 1.0 (3 H, t, J 7 Hz, MeCH₂).

(Z)-Dec-5-enone ethylene acetal Z-(12e). The HR_F diastereoisomer of the alcohol (11e) (350 mg, 0.84 mmol) and sodium hydride (41 mg, 0.84 mmol) gave the olefin Z-(11e) as a colourless liquid (138 mg, 83%), b.p. 105 °C (oven temp.)/15 mmHg, v_{max} (soln.) 1 645 (C=C) and 1 070 cm⁻¹ (C-O); δ (CDCl₃) 5.3 (2 H, m, CH=CH), 3.7 (4 H, s, OCH₂CH₂O), 2.5— 1.5 (10 H, m, 5 × CH₂), 1.2 (3 H, s, MeC), and 1.0 (3 H, t, J 7 Hz, MeCH₂) (Found: C, 72.92; H, 11.01. C₁₂H₂₂O₂ requires C, 72.68; H, 11.18%).

(Z)-7-Methyloct-5-en-one ethylene acetal Z-(12f). The HR_F diastereoisomer of the alcohol (11f) (350 mg, 0.87 mmol) and sodium hydride (42 mg, 0.88 mmol) gave the olefin Z-(12f) as a colourless liquid (123 mg, 77%), b.p. 105–108 °C/20 mmHg, δ (CDCl₃) 5.2 (2 H, m, CH=CH), 3.8 (4 H, m, OCH₂CH₂O), 2.4–2.2 (5 H, m, CH₂CH₂CH=CHCH), 1.3 (3 H, s, MeC), and 0.85 (6 H, d, 7 Hz, Me₂CH).

(Z)-6-Phenylhex-5-en-2-one ethylene acetal Z-(12g). The H R_F diastereoisomer of the alcohol (11g) (2.0 g, 4.58 mmol) and sodium hydride (220 mg, 4.6 mmol) gave the olefin Z-(12g) as a colourless liquid (898 mg, 90%), b.p. 82–85 °C (oven temp.)/2 mmHg, v_{max} (film) 1 620 (C=C) and 1 080 cm⁻¹ (C-O); δ (CDCl₃) 7.35 (5 H, s, PhCH), 6.35 (1 H, dt, J_{HH} 10 Hz, 7 Hz, CH₂CH=CHPh), 5.6 (1 H, dt, J_{HH} 10 Hz, 1 Hz, CH₂-CH=CHPh), 2.3 (2 H, q, J 7 Hz, CH₂CH=CH), 2.0 (2 H, t, J 7 Hz, CH₂CH₂CH=CHPh), and 1.0 (3 H, s, MeC); m/z 218 (M^+ , 10%), 203 (M – Me, 45), 117 (PhCH=CHCH₂⁺, 20), 87 (C₄H₇O₂⁺, 15%), and 77 (Ph⁺, 100%).

(Z)-6-Cyclohexylhexan-2-one ethylene acetal Z-(12h). The HR_F diastereoisomer of the alcohol (11h) (140 mg, 0.31 mmol), and sodium hydride (18 mg, 1.18 equiv.) gave the olefin Z-(12h) as an oil (40 mg, 58%), δ (CDCl₃) 5.7 (1 H, d, J 9 Hz, CH=CHC₆H₁₁), 5.45 (1 H, dt, J 9 Hz, J 7 Hz, CH₂CH=CH), 3.8 (4 H, s, OCH₂CH₂O), 2.5–2.0 [5 H, m, CH₂CH₂-CH=CHCH(CH₂)₅], and 1.5–1.0 [13 H, m, including sharp s at 1.1 p.p.m., MeC and (CH₂)₅ envelope].

(E)-Hept-5-en-2-one ethylene acetal E-(12b). As for the HR_F diastereoisomers, the LR_F diastereoisomer of the alcohol (11b) (500 mg, 1.33 mmol) and sodium hydride (64 mg, 1.33 mmol) gave the olefin E-(12b) as a colourless liquid (166 mg, 80%)

b.p. 90 °C (oven temp.)/20 mmHg (lit.,⁴ 79–84 C/18 mmHg), $v_{max.}$ (soln.) 1 060 cm⁻¹ (C-O); δ (CDCl₃) 5.35 (2 H, m, CH=CH), 3.8 (4 H, s, OCH₂CH₂O), 2.3–1.5 (7 H, m, CH₂CH₂CH= CHMe), and 1.21 (3 H, s, MeC).

(E)-Non-5-en-2-one ethylene acetal E-(12d). The LR_F diastereoisomer of the alcohol (11d) (320 mg, 0.8 mmol) and sodium hydride (39 mg, 0.8 mmol) gave the olefin E-(12d) as an oil (125 mg, 85%), v_{max} .(soln.) 1 080 cm⁻¹ (C–O), δ (CDCl₃), 5.3 (2 H, m, CH=CH), 3.8 (4 H, s, OCH₂CH₂O), 2.3–1.7 (8 H, m, 4 × CH₂), 1.2 (3 H, s, MeC), and 0.95 (3 H, t, J 7 Hz, MeCH₂).

(E)-Dec-5-en-2-one ethylene acetal E-(12e). The LR_F diastereoisomer of the alcohol (11e) (416 mg, 1.0 mmol) and sodium hydride (48 mg, 1.0 mmol) gave the olefin E-(12e) as a colourless liquid (142 mg, 72%), b.p. 125 °C (oven temp.)/14 mmHg, v_{max} (soln.) 1 070 cm⁻¹ (C–O); δ (CDCl₃) 5.3 (2 H, m, CH=CH), 3.7 (4 H, s, OCH₂CH₂O), 2.5–1.5 (10 H, m, 5 × CH₂), 1.2 (3 H, s, MeC), and 1.0 (3 H, t, J 7 Hz, MeCH₂).

(E)-7-Methyloct-5-en-2-one ethylene acetal E-(12f). The LR_F diastereoisomer of the alcohol (11f) (300 mg, 0.75 mmol) and sodium hydride (36 mg, 0.75 mmol) gave the olefin E-(12f) as an oil (109 mg, 79%), δ (CDCl₃) 5.4 (2 H, m, CH=CH), 3.85 (4 H, s, OCH₂CH₂O), 2.3-1.8 (5 H, m, CH₂CH₂CH=CHCH), 1.2 (3 H, s, MeC), and 0.95 (6 H, d, J 7 Hz, Me₂CH).

(E)-6-Phenylhex-5-en-2-one ethylene acetal E-(12g). The LR_F diastereoisomer of the alcohol (11g) (500 mg, 1.15 mmol) and sodium hydride (56 mg, 1.15 mmol) gave the olefin E-(12g) as a colourless liquid (208 mg, 83%), b.p. 105 °C (oven temp.)/2 mmHg, v_{max} . (soln.) 1 080 cm⁻¹ (C-O); δ (CDCl₃) 7.85—7.3 (5 H, s, PhCH), 6.4 (1 H, d, J_{HH} 16 Hz, CH=CHPh), 6.1 (1 H, dt, J_{HH} 16, 7 Hz, CH₂CH=CHPh), 2.3—1.9 (4 H, m, CH₂CH₂-CH=CHPh), and 1.2 (3 H, s, MeC).

5-Diphenvlphosphinovl-6-hvdroxy-5-methvl-6-phenvlhexan-2one Ethylene Acetal (24).-BuLi (0.7 ml, 1.08 mmol) was added to a solution of the phosphine oxide (10b) (344 mg, 1.0 mmol), in THF (15 ml) at 0 °C under nitrogen. After 15 min the solution was cooled to -78 °C and benzaldehyde (150 mg, 1.4 mmol) added. The solution was allowed to warm to room temperature and aqueous ammonium chloride (20 ml, saturated solution) added. The organic phase was separated, and the aqueous phase extracted with ether (4 \times 20 ml). The combined organic phases were dried (Na_2SO_4) and evaporated under reduced pressure to give, after p.l.c., the alcohol (24); HR_F diastereoisomer (166 mg, 37%) as needles, m.p. 160–162 °C (from EtOAc- $Pr_{2}^{i}O$), R_{F} 0.40 (EtOAc), v_{max} (soln.) 3 300 (O-H), 1 440 (P-Ph), and 1 170 cm⁻¹ (P=O); δ(CDCl₃) 8.1-7.1 (15 H, m, Ph₂PO and Ph), 5.1 (1 H, br s, OH), 4.9 (1 H, d, J_{PH} 14 Hz, CHOH), 3.7-3.5 (4 H, m, OCH₂CH₂O), 2.7–1.7 (4 H, m, CH₂CH[•]₂CMeP), 1.4 (3 H, d, J_{PH} 18 Hz, MeCP), and 0.9 (3 H, s, MeC); *m*/*z* 450 (*M*⁺, 5%), 343 (M - PhCHOH, 35%), 337 $(M - C_4H_6O_2, 10\%)$, and 201 $(Ph_2PO^+, 100\%)$; and LR_F diastereoisomer (157 mg, 35\%) as needles, m.p. 183—185 °C (from EtOAc), R_F 0.35 (EtOAc), v_{max}.(soln.) 3 250 (O-H), 1 420 (P-Ph), and 1 155 cm⁻¹ (P=O); δ(CDCl₃) 8.1-7.2 (15 H, m, Ph₂PO and Ph), 5.3 (1 H, d, J_{PH} 16 Hz, CHOH), 5.2 (1 H, br s, OH), 3.8 (4 H, s, OCH₂CH₂O), 2.6-2.0 (5 H, m including d, J_{PH} 17 Hz at 2.4 p.p.m., CH^{*}₂CMeP), 1.8 (2 H, t, J7 Hz, CH₂CH₂CMeP), and 1.0 (3 H, s, MeCO); m/z $450 (M^+, 20\%), 343 (M - PhCHOH, 45\%), and 201 (Ph_2PO^+, Mathematical Structure)$ 100%).

The following were prepared in a similar manner.

5-Diphenylphosphinoyl-6-hydroxy-3-methyl-6-phenylhexan-2one ethylene acetal (11i). The phosphine oxide (10d) (345 mg, 1.0 mmol), BuLi (0.7 ml, 1.08 mmol), and benzaldehyde (150 mg, 1.4 mmol) gave after p.l.c., two diastereoisomers of the alcohol (11i): HR_F diastereoisomer (207 mg, 46%), m.p. 174—181 °C (from EtOAc-hexane), R_F 0.33 (EtOAc), v_{max} (soln.) 3 220 (O-H), 1 440 (P-Ph), and 1 170 cm⁻¹ (P=O); δ (CDCl₃) 8.1—7.3 (15 H, m, Ph₂PO and Ph), 5.0 (1 H, dd, J_{HH} 6 Hz, J_{PH} 16 Hz, CHOH), 4.5 (1 H, br s, OH), 3.8 (4 H, sym m, OCH₂CH₂O), 2.4 (1 H, m, CHP), 1.9—1.5 (3 H, m, CHCH^{*}₂CHP), 1.2 (3 H, s, MeC), and 1.0 (3 H, d, J 7 Hz, MeCH); and the LR_F diastereoisomer (72 mg, 16%) as an oil, R_F 0.25 (EtOAc), δ (CDCl₃) 7.9—6.9 (15 H, m, Ph₂PO and Ph), 5.3 (1 H, dd, J_{HH} 6 Hz, J_{PH} 12 Hz, CHOH), 3.6—3.3 (4 H, m, OCH₂CH₂O), 2.3—1.4 (4 H, m, MeCH-CH^{*}₂CHP), 1.2 (3 H, s, MeC), and 0.95 (3 H, d, J 6.5 Hz, MeCH).

5-Diphenylphosphinoyl-6-hydroxy-6-methylheptan-2-one ethylene acetal (**25a**; $R^1 = R^2 = Me$). The phosphine oxide (**10a**) (3.30 g, 10 mmol), BuLi (7.2 ml, 1.1 equiv.), and acetone (1 ml, excess) gave the alcohol (**25a**) (2.72 g, 70%) as needles, m.p. 118—119 °C (from EtOAc—Pr¹₂O), R_F 0.40 (EtOAc-MeOH, 9:1), v_{max} .(Nujol) 3 400 (O–H), 1 440 (P–Ph), and 1 165 cm⁻¹ (P=O); δ (CDCl₃) 8.0—7.3 (10 H, m, Ph₂PO), 4.9 (1 H, br s, OH), 3.7 (4 H, s, OCH₂CH₂O), 2.35 (1 H, td, J_{HH} 7 Hz, J_{PH} 5 Hz, CHP), 2.0—1.45 (4 H, m, CH₂CH⁺₂CHP), 1.35 (3 H, s, MeCO), and 1.15 (6 H, d, J_{PH} 16 Hz, Me₂COH); m/z 388 (M⁺, 0.2%), 329 (M – Me₂COH, 80%), and 201 (Ph₂PO⁺, 100%) (Found: M⁺, 388.1800. C₂₂H₂₉O₄P requires M, 388.1803).

5-Diphenylphosphinoyl-6-hydroxy-6-methyloctan-2-one ethylene acetal (25e; $R^1 = Me$, $R^2 = Et$). The phosphine oxide (10a) (1.0 g, 3.03 mmol), BuLi (2.10 ml, 1.08 equiv.), and butanone (0.5 ml, 1.8 equiv.), after chromatography (SiO₂, eluted with EtOAc-MeOH, 9:1), gave the HR_F diastereoisomer (25e) (475 mg, 39%) as needles, m.p. 110-112 °C (from EtOAc-Prⁱ₂O), R_F 0.40 (EtOAc-MeOH, 9:1), v_{max} (soln.) 3 350 (O-H), 1 440 (P-Ph), 1 160 (P=O), and 1 055 cm⁻¹ (C-O); δ(CDCl₃) 7.9-7.2 (10 H, m, Ph₂PO), 4.5 (1 H, s, OH), 3.8 (4 H, s, OCH₂CH₂O), 2.5 (1 H, ddd, J_{PH} 5 Hz, J_{HH} 2, 8 Hz, CH^{*}₂CHP), 2.0—1.5 (6 H, m, 3 × CH₂), 1.3 (3 H, s, MeC), 1.25 (3 H, d, J_{PH} 15 Hz, MeCOH), and 0.9 (3 H, t, 7 Hz, MeCH₂) (Found: C, 68.51; H, 7.94; P, 8.13; C₂₃H₃₁O₄P requires C, 68.64; H, 7.76; P, 7.70%); and the LR_F diastereoisomer (25e) (463 mg, 38%) as needles, m.p. 121-124 °C (from EtOAc), R_F 0.32 (EtOAc-MeOH, 9:1), δ (CDCl₃) 7.9-7.1 (10 H, m, Ph₂PO), 4.1 (1 H, br s, OH), 3.8 (4 H, s, OCH₂CH₂O), 2.45 (1 H, ddd, J_{PH} 5 Hz, J_{HH} 4, 5 Hz, $CH_{2}^{*}CHP$), 2.0–1.5 (6 H, m, 3 × CH_{2}^{*}), 1.3 (3 H, s, MeC), 1.2 (3 H, d, J_{PH} 12 Hz, MeCOH), and 1.0 (3 H, dt, J_{PH} 2 Hz, J_{HH} 7 Hz, MeCH₂).

5-Diphenylphosphinoyl-6-ethyl-6-hydroxyoctan-2-one ethylene acetal (25b; $R^1 = R^2 = Et$). The phosphine oxide (10a) (2.30 g, 6.97 mmol), BuLi (4.9 ml, 7.5 mmol), and pentan-3-one (650 mg, 7.55 mmol) gave the alcohol (25a) (1.39 g, 48%) as a gum, which crystallised very slowly (ca. 2 months), v_{max} (soln.) 3 400 (O-H), 1 440 (P-Ph), and 1 160 cm⁻¹ (C-O); δ (CDCl₃) 8.0—7.2 (10 H, m, Ph₂PO), 3.8 (4 H, s, OCH₂CH₂O), 2.4 (1 H, dt, J_{PH} 6 Hz, CHP), 1.9—1.4 (8 H, m including q, J 7 Hz at 1.55 p.p.m., 4 × CH₂), 1.25 (3 H, s, MeC), and 1.0 (6 H, t, J 7 Hz, 2 × MeCH₂).

5-Diphenylphosphinoyl-6-hydroxy-6-methylnonan-2-one ethylene acetal (25f; $R^1 = Me$, $R^2 = Pr^n$). The phosphine oxide (10a) (330 mg, 1.0 mmol), BuLi (0.7 ml, 1.1 mmol), and pentan-2one (100 mg, 1.2 mmol) after chromatography (SiO₂ eluted with EtOAc-MeOH, 9:1) gave the HR_F diastereoisomer (25f) (117 mg, 28%) as needles, $R_F 0.35$ (EtOAc-MeOH, 9:1), δ (CDCl₃), 7.8-7.1 (10 H, m, Ph₂PO), 4.5 (1 H, s, OH), 3.75 (4 H, sym m, OCH₂CH₂O), 2.3 (1 H, ddd, J_{PH} 6 Hz, J_{HH} 3, 6 Hz, CH[•]₂CHP), 1.9—1.4 (8 H, m, 4 × CH₂), 1.3 (3 H, d, J_{PH} 16 Hz, MeCOH), 1.25 (3 H, s, MeC), and 0.9 (3 H, t, J_{HH} 7 Hz, MeCH₂); and the LR_F diastereoisomer (25f) (116 mg, 28%) as prisms, m.p. 144—147 °C (from EtOAc), $R_{\rm F}$ 0.27 (EtOAc-MeOH, 9:1), vmax (soln.) 3 350 (O-H), 1 440 (P-Ph), 1 170 (P=O), and 1 060 cm^{-1} (C–O); δ (CDCl₃) 7.9–7.1 (10 H, m, Ph₂PO), 4.9 (1 H, br s, OH), 3.8 (4 H, s, OCH₂CH₂O), 2.4 (1 H, ddd, J_{PH} 8 Hz, J_{HH} 3, 8.5 Hz, CH_2^*CHP), 1.9–1.4 (8 H, m, 4 × CH_2), 1.3–1.1 (6 H, m, including s at 1.2, MeC and MeC-OH), and 1.0 (3 H, t, J_{HH} 7 Hz, MeCH₂).

5-Diphenylphosphinoyl-6-hydroxy-6,7-dimethoxyoctan-2-one ethylene acetal (25; $R^1 = Me$, $R^2 = Pr^i$). The phosphine oxide (10a) (1.65 g, 5 mmol), BuLi (3.5 ml, 5.5 mmol), and 3-methylbutan-2-one (500 mg, 5.8 mmol) gave, after chromatography (SiO₂ eluted with EtOAc), the HR_F diastereoisomer (603 mg, 29%), as prisms, m.p. 97-100 °C (from EtOAc), R_F 0.35 (EtOAc), v_{max}.(Nujol) 3 250 (O-H), 1 435 (P-Ph), and 1 165 cm⁻¹ (P=O); δ (CDCl₃) 8.0–7.2 (10 H, m, Ph₂PO), 4.8 (1 H, s, OH), 3.8 (4 H, s, OCH₂CH₂O), 2.4 (1 H, ddd, J_{PH} 6 Hz, J_{HH} 3, 8 Hz, CH^{*}₂CHP), 1.9–1.3 (5 H, m, CH₂CH^{*}₂CHP, CHMe2), 1.2 (3 H, d, JPH 15 Hz, MeC-OH), 1.15 (3 H, s, MeC), and 1.0 (6 H, d, J_{HH} 6 Hz, Me₂CH); m/z 416 (M⁺, absent), 329 $(M - \text{MePr}^{i}\text{COH}, 80\%)$, and 201 $(\text{Ph}_{2}\text{PO}^{+}, 100\%)$; and the LR_F diastereoisomer (686 mg, 33%) as needles, m.p. 91-95 °C (from EtOAc), R_F 0.28 (EtOAc) (Found: C, 68.95, H, 8.04. C24H33O4P requires C, 69.21%; H, 7.98%), δ(CDCl3) 8.0-7.2 (10 H, m, Ph₂PO), 4.2 (1 H, s, OH), 3.8 (4 H, sym m, OCH₂-CH₂O), 2.3 (1 H, m including J 7 Hz, CH[•]₂CHP), 2.0–1.3 (5 H, m, CH₂CH^{*}₂CHP, CHMe₂), 1.3 (3 H, d, J_{PH} 13 Hz, MeC-OH), 1.15 (3 H, s, MeC), and 0.95 (6 H, d, J_{HH} 6.5 Hz, Me₂CH).

5-Diphenylphosphinoyl-6-hydroxy-6-phenylheptan-2-one ethylene acetal (25h; $R^1 = Me$, $R^2 = Ph$). The phosphine oxide (10a) (1.32 g, 4 mmol), BuLi (2.8 ml, 4.4 mmol), and acetophenone [1 ml in lithium bromide-saturated THF (10 ml)], gave, after chromatography (SiO₂, eluted with EtOAc), the HR_F diastereoisomer (665 mg, 37%), as needles, m.p. 170-175 °C (from EtOAc-hexane), R_F 0.4 (EtOAc), v_{max} (soln.) 3 400 (O-H), 1 440 (P-Ph), and 1 165 cm⁻¹ (P=O); δ(CDCl₃) 7.9-7.0 (15 H, m, Ph₂PO and Ph), 4.3 (1 H, br s, OH), 3.5 (4 H, m, OCH₂CH₂O), 2.85 (1 H, ddd, J_{PH} 10 Hz, J_{HH} 4, 6 Hz, CH₂[•]CHP), and 1.7–1.2 (10 H, m, MeC, $CH_2CH_2^{\bullet}CHP$, MeCOH); m/z 450 (M^+ , absent), 435 (M - Me, 10%), 329 (M - PhCMeOH, 95%), and 201 $(Ph_2PO^+, 100\%)$; and the LR_F diastereoisomer (610 mg, 34%), as needles, m.p. 210-217 °C (from EtOAc), $R_{\rm F}$ 0.35 (EtOAc), $v_{\rm max}$ (soln.) 3 380 (O-H), 1 440 (P-Ph), 1 160 (P=O), and 1 050 cm⁻¹ (C-O); δ(CDCl₃) 8.1-7.1 (15 H, m, Ph₂PO and Ph), 3.7-3.3 (4 H, m, OCH₂CH₂O), 2.5 (1 H, ddd, J_{PH} 7 Hz, J_{HH} 2, 8 Hz, CH[•]₂CHP), and 1.7-1.1 (10 H, m, MeC, CH2CH2CHP, and MeCOH).

5-Diphenylphosphinoyl-5-(1-hydroxycyclohexyl)pentan-2-one ethylene acetal [25d; $R^1R^2 = (CH_2)_5$]. The phosphine oxide (10a) (3.30 g, 10 mmol), BuLi (7.1 ml, 11.0 mmol), and cyclohexanone (1.5 ml, 14.5 mmol) gave the phosphine oxide (25d) as plates (3.00 g, 70%), m.p. 147—149 °C (from EtOAc-Prⁱ₂O), v_{max}.(Nujol) 3 250 (O-H), 1 440 (P-Ph), and 1 170 cm⁻¹ (P=O); δ (CDCl₃) 7.8—7.0 (10 H, m, Ph₂PO), 4.0—3.8 (5 H, m including sharp s at 3.85, OH, OCH₂CH₂O), 2.5 (1 H, m, including J 8 Hz, CHP), and 1.8—1.1 [17 H, m including sharp s at 1.3, MeC, CH₂CH^{*}₂CHP, (CH₂)₅]; m/z 428 (M⁺, 1%), 329 [M - (CH₂)₅COH, 100%], and 201 (Ph₂PO⁺, 80%) (Found: M⁺, 428.2117. C₂₃H₃₃O₄P requires M, 428.2115).

5-Diphenylphosphinoyl-5-(1-hydroxycyclopentyl)pentan-2one ethylene acetal [25c; $R^1R^2 = (CH_2)_4$]. The phosphine oxide (10a) (1.40 g, 4.25 mmol), BuLi (3.0 ml, 4.6 mmol), and a solution of cyclopentanone in LiBr-saturated THF (1.0 ml in 10 ml) gave, after chromatography (SiO₂, eluted with EtOAc-MeOH 9:1), the phosphine oxide (25c) as needles (897 mg, 51%), m.p. 131—133 °C (from EtOAc), $R_F 0.35$ (EtOAc-MeOH, 9:1), δ (CDCl₃) 8.0—7.1 (10 H, m, Ph₂PO), 4.5 (1 H, br s, OH), 3.8 (4 H, s, OCH₂CH₂O), 2.5 (1 H, dt, J_{PH} 5 Hz, J_{HH} 7 Hz, CHP), and 1.9—1.2 [15 H, m, including sharp s at 1.25, MeC, $CH_2CH_2CH_2$, (CH₂)₄]; m/z 414 (M^+ , 0.2%), 329 [M – (CH₂)₄COH, 60%], and 202 (Ph₂POH⁺, 100%) (Found: M, 414.1942. C₂₄H₃₁O₄P requires M, 414.1959).

6-Methylhept-5-en-2-one Ethylene Acetal (**26a**; $R^1 = R^2 = Me$).—Sodium hydride (50% in oil) (310 mg, 6.56 mmol) was added to a solution of the alcohol (**25a**) (2.5 g, 6.45 mmol) in

DMF (20 ml). The solution was heated at 50 °C for 1 h and then poured into a mixture of ether (50 ml) and water (30 ml). The organic layer was separated and the aqueous layer was washed with ether (2 × 25 ml). The combined organic layers were washed with water (20 ml), dried (Na₂SO₄), and evaporated under reduced pressure, to give the olefin (**26a**) as a colourless liquid (926 mg, 84%), b.p. 91–95 °C/14 mmHg (lit.,⁴⁸ 86–89 °C/12 mmHg), R_F 0.95 (Et₂O), v_{max} (soln.) 1 675 (C=C) and 1 060 cm⁻¹ (C–O); δ (CDCl₃) 5.2 (1 H, t, *J* 7 Hz, C*H*=CMe₂), 3.9 (4 H, s, OCH₂CH₂O), 2.4–1.5 (10 H, m including 2 × sharp s at 1.7 and 1.6, CH₂CH₂CH=CMe₂), and 1.05 (3 H, s, MeCO), m/z 170 (M^+ , 5%), 155 (M – Me, 5%), 88 (C₄H₈O⁺, 5%), and 87 (C₄H₇O⁺, 100%).

The following were prepared similarly.

(Z)-6-Methyloct-5-en-2-one ethylene acetal⁴⁹ (**26e**; $R^1 = Me$, $R^2 = Et$). The HR_F diastereoisomer of the alcohol (**25e**) (402 mg, 1.0 mmol) and sodium hydride (48 mg, 1.0 mmol) in DMF (5 ml) gave the olefin (**26e**) as a colourless oil (134 mg, 73%), R_F 0.85 (Et₂O), v_{max} .(soln.) 1 070 cm⁻¹ (C-O); δ (CDCl₃) 5.0 (1 H, t, J 7 Hz, CH-CMeEt) 3.7 (4 H, s, OCH₂CH₂O), 1.7—1.3 (7 H, m, including s at 1.6 p.p.m., CH₂CH=CMeCH₂Me), 1.2 (3 H, s, MeCO), and 0.9 (3 H, t, J 7 Hz, MeCH₂).

(E)-6-Methyloct-5-en-2-one ethylene acetal (**26e**; $\mathbb{R}^1 = \mathbb{E}t$, $\mathbb{R}^2 = \mathbb{M}e$). The L R_F diastereoisomer of the alcohol (**25e**) (402 mg, 1.0 mmol) and sodium hydride (48 mg, 1.0 mmol) in DMF (5 ml) gave the olefin (**26e**) as a colourless oil (149 mg, 81%), b.p. 84—88 °C (oven temperature/15 mmHg) (lit.,⁴⁹ 44 °C/2 mmHg), R_F 0.85 (Et₂O), δ (CDCl₃) 5.05 (1 H, t, J 6.5 Hz, CH=CMeEt), 3.8 (4 H, s, OCH₂CH₂O), 1.8—1.2 (9 H, m, including sharp s at 1.5 p.p.m., CH₂CH₂C=CMeCH₂Me), 1.15 (3 H, s, MeCO), and 0.9 (3 H, t, J 7 Hz, MeCH₂).

(Z)-6,7-Dimethyloct-5-en-2-one ethylene acetal (26g). The HR_F diastereoisomer of the alcohol (25g) (500 mg, 1.2 mmol) and sodium hydride (58 mg, 1.2 mmol) in DMF (8 ml) gave the olefin (26g) as a colourless oil (195 mg, 82%), R_F 0.80 (Et₂O), v_{max} (soln.) 1 650 (C=C) and 1 070 cm⁻¹ (C-O); δ (CDCl₃) 5.0 (1 H, t, J 7 Hz, CH=CMePrⁱ), 3.8 (4 H, s, OCH₂CH₂O), 1.8—1.4 (8 H, m, CH₂CH₂CH=CMeCHMe₂), 1.2 (3 H, s, MeCO), and 1.0 (6 H, d, J 6 Hz, Me₂CH).

(E)-6,7-Dimethyloct-5-en-2-one ethylene acetal (**26g**). The LR_F diastereoisomer of the alcohol (**25g**) (500 mg, 1.2 mmol) and sodium hydride (58 mg, 1.2 mmol) in DMF (8 ml) gave the olefin (**26g**) as a pale yellow oil (159 mg, 67%), R_F 0.77 (Et₂O), v_{max} .(film) 1 635 (C=C) and 1 060 cm⁻¹ (C-O).

5-Cyclohexylidenepentan-2-one ethylene acetal [26c; R¹, R² = (CH₂)₅]. The alcohol (25c) (2.5 g, 5.84 mmol) and sodium hydride (280 mg, 5.84 mmol) in DMF (20 ml) gave the olefin (26c) as a colourless liquid (1.09 g, 89%), b.p. 95—100 °C (oven temperature/1 mmHg, R_F 0.70 (Et₂O), v_{max} (film) 1 055 cm⁻¹ (C-O); δ (CDCl₃) 5.0 [1 H, t, J 7 Hz, CH=C(CH₂)₅], 3.65 (4 H, m, OCH₂CH₂O), 1.7 (2 H, t, J 7 Hz, CH₂CH₂CH=C), and 1.5—1.0 [15 H, m, including sharp s at 1.2 p.p.m., MeC, CH₂CH=C(CH₂)₅]; m/z 210 (M⁺, 2%), 195 (M – Me, 60%), 109 [(CH₂)₅C=CHCH₂⁺, 30%], and 87 (C₄H₇O₂⁺, 100%) (Found: M⁺, 210.1620. C₁₃H₂₂O₂ requires M, 210.1616).

5-Diphenylphosphinoyl-5-phenylthiopentan-2-one Ethylene Acetal (36).—A solution of the lithium anion of the phosphine oxide (10a) made from the addition of BuLi (7.0 ml, 10 mmol), to the phosphine oxide (10a) (3.30 g, 10 mmol) in THF (40 ml) at 0 °C was cooled to -78 °C and added very slowly to a solution of diphenyl disulphide (2.18 g, 10 mmol) in THF (50 ml) at -78 °C. When the addition was complete (4 h), the solution was allowed to warm slowly to room temperature. Saturated aqueous ammonium chloride (30 ml) was added and the organic phase separated. The aqueous phase was extracted with ether (3 × 20 ml). The combined organic phases were dried (Na₂SO₄) and concentrated under reduced pressure to give, after chromatography (SiO₂, eluting with EtOAc), starting material (790 mg, 27%), the sulphide (**36**) (1.75 g, 41%) and the disulphenylated material (**37**) (1.31 g, 24%). The *sulphide* (**36**) was obtained as needles, m.p. 134—136 °C (from EtOAc), R_F 0.4 (EtOAc), v_{max} .(soln.) 1 480 (Ph–S), 1 440 (Ph–P), 1 185 (P=O), and 1 060 cm⁻¹ (C–O); δ (CDCl₃), 7.85, 7.4—7.25 (10 H, m, Ph₂PO), 7.12 (5 H, s, PhS), 3.8 (4 H, sym m, OCH₂CH₂O), 2.3—1.8 (5 H, m, CH₂CH^{*}₂CHP), and 1.20 (3 H, s, MeC); 5-diphenylphosphinoyl-5,5-bisphenylthiopentan-2-one ethylene acetal (**37**) was obtained as needles, R_F 0.47 (EtOAc), v_{max} .(soln.) 1 480 (Ph–S), 1 440 (Ph–P), 1 175 (P=O), and 1 060 cm⁻¹ (C–O); δ (CDCl₃) 8.3 (4 H, m) and 7.5—7.0 (16 H, m) (2 × PhS, Ph₂PO), 3.8—3.4 (4 H, sym, m, OCH₂CH₂O), 2.10 (2 H, t, J 6 Hz, CH₂CH₂CP), 1.60 (2 H, dt, J_{PH} 15 Hz, J_{HH} 6 Hz, CH₂CH₂CP), and 0.95 (3 H, s, MeC).

The same products were formed by addition of the lithium anion of the phosphine oxide (10a) to phenylsulphenyl chloride in the following yields: starting material (21%), sulphide (36) (46%), and bissulphide (37) (14%).

5-Phenylthiopentan-2-one Ethylene Acetal (34).—A solution of 5-chloropentan-2-one ethylene acetal (8; Y = Cl) (8.2 g, 50 mmol) and sodium thiophenoxide (6.6 g, 50 mmol) in absolute ethanol (100 ml) was heated at reflux overnight. The precipitate was filtered off and the liquors evaporated under reduced pressure to give the sulphide (9.8 g, 82.5%) as a colourless liquid, b.p. 160 °C (oven temp.)/3 mmHg, $R_F 0.70$ (Et₂O), v_{max} (film) 1 585, 1 480 (SPh), and 1 060 cm⁻¹ (C-O); δ (CDCl₃) 7.2 (5 H, m, SPh), 3.8 (4 H, s, OCH₂CH₂O), 2.8 (2 H, t, J 7 Hz, CH₂SPh), 1.9—1.6 (4 H, m, CH₂CH₂CH₂SPh), and 1.2 (3 H, s, MeC); m/z 238 (M^+ , 15%), 223 (M – Me, 25%), 137 (PhS CH₂CH₂⁺, 10%), 110 (PhSH⁺, 85%), and 109 (PhS⁺, 100%).

5-Chloro-5-phenylthiopentan-2-one Ethylene Acetal (35).—A solution of 5-phenylthiopentan-2-one ethylene acetal (4.76 g, 20 mmol) in carbon tetrachloride (20 ml) was added dropwise to a suspension of N-chlorosuccinimide (2.67 g, 20 mmol) in carbon tetrachloride (20 ml) under nitrogen at 0 °C. The mixture was stirred overnight and allowed to warm to room temperature. The white precipitate was filtered off and the liquors evaporated under reduced pressure to give the *chloro sulphide* (35) as a colourless liquid (3.38 g, 60%), b.p. 145 °C (oven temperature)/1 mmHg, v_{max}.(soln. in CCl₄) 1 490 (SPh) and 1 075 cm⁻¹ (C–O); δ (CCl₄) 7.1 (5 H, m, SPh), 5.0 [1 H, t, J 6.5 Hz, CHCl(S)Ph], 3.7 (4 H, s, OCH₂CH₂O), 1.8—1.4 (4 H, m, CH₂CH₂CH), and 1.15 (3 H, s, MeC).

5-Diphenylphosphinoyl-5-phenylsulphinylpentan-2-one Ethylene Acetal (**39**).—A solution of *m*-chloroperbenzoic acid (1.81 g, 10.5 mmol) in chloroform (30 ml) was added dropwise to a solution of the sulphide (**36**) (2.19 g, 5 mmol) in chloroform (20 ml) at room temperature. The solution was stirred for 2 h, water (30 ml) was added, and the organic layer separated. The aqueous layer was extracted with chloroform (3 × 20 ml). The combined organic phases were washed with water (20 ml), dried (Na₂SO₄), and evaporated under reduced pressure to give the sulphoxide (**39**) (1.92 g, 85%) as a pale oil, R_F 0.2 (EtOAc), v_{max} (soln.) 1 570, 1 480n (SPh), 1 440 (P-Ph), 1 165 (P=O), 1 060 (C-O), and 1 040 cm⁻¹ (S=O); δ (CDCl₃) 8.2—7.3 (15 H, m, Ph₂PO and PhSO), 4.0—3.5 (5 H, m, OCH₂CH₂O, CHPS), 2.3—1.4 (4 H, m, CH₂CH₂CHPOS), and 1.0 (3 H, s, MeC).

(E)-5-Diphenylphosphinoylpent-4-en-2-one Ethylene Acetal (40).—The sulphoxide (39) (454 mg, 1.0 mmol) was heated in toluene (3 ml) at 100 °C for 6 h. The mixture was cooled and the crude product chromatographed (SiO₂/EtOAc) to give the vinyl phosphine oxide (40) (327 mg, 95%) as prisms, m.p. 156—158 °C, $R_{\rm F}$ 0.15 (EtOAc), $v_{\rm max}$ (Nujol) 1 640 (C=C), 1 440 (P-Ph), and 1 165 cm⁻¹ (P=O); δ (CDCl₃) 7.85–7.35 (10 H, m, Ph₂PO), 6.65 (1 H, ddt, J_{PH} 33, J_{HH} 18, 7 Hz, CH₂CH=CHP), 6.4 (1 H, dd, J_{PH} 42, J_{HH} 18 Hz, CH=CHP), 3.85 (4 H, s, OCH₂CH₂O), 2.6 (2 H, d, J_{HH} 7 Hz, CH₂CH), 1.3 (3 H, s, MeC).

5-Diphenylphosphinoylpent-3-en-2-one (41).—Butyl-lithium (0.7 ml, 1.1 equiv.) was added dropwise to a stirred solution of the vinyl phosphine oxide acetal (40) (344 mg, 1.0 mmol) in THF (5 ml) under nitrogen at -60 °C. An instantaneous orange colour formed at the surface as the butyl-lithium drop touched it, but stirring caused the colour to disappear. After the butyl-lithium had been added, the solution was cooled to -78 °C and benzaldehyde (115 mg, 1.1 equiv.) was added. After 20 min at -78 °C the cooling bath was removed and the solution allowed to warm to room temperature. Water (3 ml) and ether (10 ml) were added and the organic layer separated. The aqueous phase was extracted with ether $(2 \times 10 \text{ ml})$. The combined organic phases were dried (Na_2SO_4) and evaporated to give the enone (41) (213 mg, 75%) as pale yellow needles, $R_{\rm F}$ 0.6 (EtOAc), v_{max} (soln.) 1 675 (C=O), 1 635 (C=C), 1 440 (P-Ph), and 1 165 cm⁻¹ (P=O); δ (CDCl₃) 7.9-7.2 (10 H, m, Ph₂PO), 6.9-6.3 (1 H, m, including J_{HH} 16 Hz, COCH=CH), 6.1 (1 H, dd, J_{HH} 16 Hz, J_{HP} 4 Hz, COCH=CH), 3.25 (2 H, dd, J_{HH} 6 Hz, J_{PH} 14 Hz, CHCH₂P), and 2.1 (3 H, s, MeC=O).

5-Phenylthiohept-5-en-2-one Ethylene Acetal (38; R = Me). BuLi (1.4 ml, 2.16 mmol) was added to a solution of the sulphide (36) (976 mg, 2.0 mmol) in THF (20 ml) under nitrogen at 0 °C. After 15 min the solution was cooled to -78 °C and acetaldehyde (1 ml, excess) added. As the mixture warmed to room temperature a cloudy precipitate began to settle. Saturated aqueous ammonium chloride (10 ml) was added and the organic phase separated. The aqueous phase was extracted with ether $(3 \times 30 \text{ ml})$; the combined organic phases were dried (Na₂SO₄) and evaporated under reduced pressure to give a mixture of isomers of the vinyl sulphide (38; R = Me) (380 mg, 72%) as a colourless oil, R_F 0.8 (CH₂Cl₂), v_{max} (soln.) 1 630 (C=C), 1 580, 1 480 (SPh), and 1 060 cm⁻¹ (C-O); δ(CDCl₃) 7.2 (5 H, m, SPh), 5.35, 5.15 [1H, 2 × q, J7 Hz, ratio ca. 1:1, MeCH=C(SPh)CH₂], 3.8 (4 H, s, OCH₂CH₂O), 2.3 (2 H, t, J7 Hz, CH₂CH₂C=C), and 1.8-1.5 (5 H, m, MeCH and CH₂CH₂C=C).

The following were prepared in a similar way.

6-Phenyl-5-phenylthiohex-5-en-2-one ethylene acetal (38; R = Ph). The phosphine oxide (36) (438 mg, 1 mmol), BuLi (0.7 ml, 1.1 mmol), and benzaldehyde (0.15 ml, 1.5 equiv.) gave after p.l.c. (eluted with CH_2Cl_2), a mixture of isomers of the vinyl sulphide (38; R = Ph) as a yellow oil (212 mg, 65%), R_F 0.75 and 0.68 (CH_2Cl_2); $\delta(CDCl_3$) 7.5—7.0 (10 H, m, SPh and Ph), 6.28 and 6.06 (1 H, 2 × s, ratio ca. 1:2, CHPh), 3.8—3.6 (4 H, m, OCH₂CH₂O), 2.3 (2 H, t, J 7 Hz, CH₂CH₂CSPh), 1.7 (2 H, t, J 7 Hz, CH₂CH₂CSPh), and 1.2 (3 H, s, MeCO).

7-Methyl-5-phenylthio-octan-5-en-2-one ethylene acetal (38; R = Prⁱ). The phosphine oxide (36) (438 mg, 1.0 mmol), BuLi (0.7 ml, 1.1 mmol), and isobutyraldehyde (0.2 ml, 2.5 mmol), gave, after p.l.c. (SiO₂, eluted with CH₂Cl₂), a mixture of isomers of the vinyl sulphide (38; R = Prⁱ) as a yellow oil (233 mg, 79%), $R_F 0.7$ (CH₂Cl₂), v_{max} (soln.) 1 640 (C=C), 1 585, 1 480 (SPh), and 1 065 cm⁻¹ (C-O); δ (CDCl₃) 7.3 (5 H, m, SPh), 5.4–5.1 (1 H, m, PrⁱCH=C), 3.8 (4 H, sym m, OCH₂CH₂O), 2.3 (2 H, t, J 7 Hz, CH₂CH₂C=C), 2.2 (1 H, dm, J 7 Hz, Me₂CH–CH=C), 1.7 (2 H, t, J 7 Hz, CH₂CH₂C=C), 1.25 (3 H, s, MeC), and 0.95 (6 H, d, J 6 Hz, Me₂CH).

Reaction of the Anion of (36) with Ketones.—Typically, the lithium anion of the sulphide (36) (made from addition of BuLi to a solution of the sulphide in THF at 0 °C), reacted with a ketone at -78 °C to decolourise the orange anion. The solution was allowed to warm to room temperature and then worked-up

in the manner described above, to give, after chromatography (SiO₂, eluted with CH_2Cl_2), starting material (36) (*ca.* 70% recovery).

Acknowledgements

We thank S.E.R.C. for a grant (to C. A. C.).

References

- 1 W. Hoffmann, H. Pasedach, and H. Pommer, Justus Liebigs Ann. Chem., 1969, 729, 52.
- 2 J. A. Findlay, W. D. Mackay, and W. S. Bowers, J. Chem. Soc. C, 1970, 2631.
- 3 H. Schulz and I. Sprung, Angew. Chem., Int. Ed. Engl., 1969, 8, 271.
- 4 L. Crombie, P. Hemesley, and G. Pattenden, J. Chem. Soc. C, 1969, 1016.
- 5 K. Mori in 'The Total Synthesis of Natural Products,' ed., J. ApSimon, Wiley, New York, 1981, vol. 4, p. 1-183.
- 6 B. V. Burger, M. LeRoux, G. F. Garbers, H. S. C. Spies, R. G. Bigalke, K. G. R. Pachier, P. L. Wessels, V. Christ, and K. H. Maurer, Z. Naturforsch., Teil C, 1976, 31, 21.
- 7 H. C. Brown, U. S. Racherla, and D. Basavaiah, Synthesis, 1984, 303.
- 8 P. Yadagiri and J. S. Yadav, Synth. Commun., 1983, 13, 1067.
- 9 L. Crombie, G. Kneen, G. Pattenden, and D. Whybrow, J. Chem. Soc., Perkin Trans. 1, 1980, 1711.
- 10 S. Isoe, Y. Hayase, and T. Sakan, Tetrahedron Lett., 1971, 3691.
- 11 J. S. Bindra and R. Bindra, 'Prostaglandin Synthesis,' Academic Press, New York, 1977, pp. 99-143.
- 12 D. J. Faulkner and M. R. Petersen, Tetrahedron Lett., 1969, 3243.
- 13 W. J. Leigh and R. Srinavasan, J. Am. Chem. Soc., 1982, 104, 4424.
- 14 F. Camps, R. Canela, J. Coll, A. Messeguer, and A. Roca, *Tetrahedron*, 1978, 34, 2179.
- 15 J. Hooz and R. B. Layton, J. Am. Chem. Soc., 1971, 93, 7320; R. F. Newton, D. P. Reynolds, J. Greenwood, and F. Scheinmann, J. Chem. Soc., Perkin Trans. 1, 1980, 2346.
- 16 J. A. Sinclair, G. A. Molander, and H. C. Brown, J. Am. Chem. Soc., 1976, 98, 7832.
- 17 P. Jacob and H. C. Brown, J. Am. Chem. Soc., 1976, 98, 7832.
- 18 A. Marfat, P. R. McGuirk, and P. Helquist, J. Org. Chem., 1979, 44, 3888.
- 19 H. Machliedt, V. Hartmann, R. Wessendorf, and W. Grell, Angew. Chem., 1962, 74, 505.
- 20 M. Kozlowska and W. Sobotka, Pol. J. Chem., 1979, 53, 1805 (Chem. Abstr., 1980, 92, 75914).
- 21 Preliminary communication: C. A. Cornish and S. Warren, Tetrahedron Lett., 1983, 24, 2603.
- 22 W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 1978, 43, 2923.
- 23 E. A. Obol'nikova and G. I. Samokhvalov, Zh. Obshch. Khim., 1963, 33, 1860 (Chem. Abstr., 1964, 60, 543f).
- 24 H. R. Hays and D. J. Peterson in 'Organic Phosphorus Compounds,' ed., G. M. Kosolapoff and L. Maier, Wiley-Interscience, New York, 1972, vol. 3, p. 343.
- 25 W. L. Johnson, U.S.P. 2 443 827 (Chem. Abstr., 1949, 43, 678a).
- 26 W. E. McEwen, K. F. Kumli, A. Blade-Font, M. Zanger, and C. A. Van der Werf, J. Am. Chem. Soc., 1964, 86, 2378.
- 27 (a) G. W. Cannon, R. C. Ellis, and J. R. Leal, Org. Synth., 1951, 31, 74;
 (b) T. E. Bellas, R. G. Brownlee, and R. M. Silverstein, Tetrahedron, 1969, 25, 5149; (c) J. ApSimon and R. Seguin, Synth. Commun., 1980, 10, 897; (d) R. Sterczycki, Synthesis, 1979, 724; (e) R. D. Miller and D. R. McKean, J. Org. Chem., 1981, 46, 2412.
- 28 G. Sturtz, Bull. Soc. Chim. Fr., 1964, 2340.
- 29 A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1985, 2307.
- 30 A. D. Buss and S. Warren, Tetrahedron Lett., 1983, 24, 3931.
- 31 A. D. Buss, R. Mason, and S. Warren, *Tetrahedron Lett.*, 1983, 24, 5293.
- 32 C. Earnshaw, R. S. Torr, and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1983, 2893.
- 33 R. S. Torr and S. Warren, J. Chem. Soc. Pak., 1979, 1, 15; J. Chem. Soc., Perkin Trans. 1, 1983, 1173; A. D. Buss, W. B. Cruse, O. Kennard, and S. Warren, *ibid.*, 1984, 243.
- 34 A. D. Buss and S. Warren, Tetrahedron Lett., 1983, 24, 111.
- 35 A. H. Davidson, C. Earnshaw, J. I. Grayson, and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1977, 1452.

- 36 M. Mikolajczyk, S. Grzejszczak, and K. Korbacz, *Tetrahedron Lett.*, 1981, 22, 3097.
- 37 P. Blatcher, J. I. Grayson, and S. Warren, J. Chem. Soc., Chem. Commun., 1978, 657.
- 38 D. L. Tuleen and T. B. Stephens. Chem. Ind. (London), 1966, 1555.
- 39 Ref. 24, pp. 360-365.
- 40 C. Earnshaw, J. I. Grayson, and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1979, 1506.
- 41 F. Korte and H. Machliedt, Chem. Ber., 1958, 90, 2137.
- 42 M. Fedorchuk and F. T. Semenuik, J. Pharm. Sci., 1963, 52, 733.
- 43 M. Julia, S. Julia, and Y. Noël, Bull. Soc. Chim. Fr., 1960, 1708.
- 44 N. K. Kochetikov, A. E. Vasil'ev, and S. N. Levchenko, *Zhur. Obshch. Khim.*, 1965, **35**, 190 (*Chem. Abstr.*, 1965, **62**, 13034b).
- 45 E. J. Salmi, Chem. Ber., 1938, 71, 1803; J. D. Cawley, B. P. 728446 (Chem. Abstr., 1956, 50, 5722f).
- 46 J. K. Crandall and C. F. Mayer, J. Org. Chem., 1969, 34, 2814.
- 47 R. B. Davis and P. Hurd, J. Am. Chem. Soc., 1955, 77, 3284.
- 48 K. Hejno and F. Sorm, Collect. Czech. Chem. Commun., 1976, 41, 151.
- 49 M. Krimer, V. I. Spektor, G. E. Muntyan, and A. A. Shamshurin, Zh. Org. Khim. (Engl. Transl.), 1974, 10, 1630.

Received 14th March 1985; Paper 5/426